Foundations of Computer Security Lecture 64: The BAN Logic

Dr. Bill Young
Department of Computer Sciences
University of Texas at Austin

Belief Logics: BAN

The BAN (Burrows, Abadi, and Needham) logic is a modal logic of belief. It has several modal operators including:

- $P \equiv X$: (P believes X) P is entitled to act as though X is true.
- $A \triangleleft X$: (A sees X) someone has sent a message to A containing X so that he can read X and repeat it.
- $A \sim K$: (A once said K) at some time, A used key K.
- $A \sim X$: (A once said X) at some time, A uttered a message containing X.
- $A \longrightarrow X$: (A has jurisdiction over X) A is an authority on X and can be trusted on X.
- $A \stackrel{K}{\longleftrightarrow} B$: (A and B share key K) A and B can use key K to communicate. The key is unknown to anyone else.

BAN Operators Continued

- #(X): (X is fresh) meaning that X has not been sent before in any run of the protocol.
- \xrightarrow{K} B: (B has_public_key K) B has a published public key K and corresponding private key K^{-1} .
- $A \stackrel{X}{\longleftrightarrow} B$: (A and B share secret X) X is a secret known only to A, B and possibly some trusted associates.

Belief Logics: Rules

There are numerous rules of inference for manipulating the protocol to generate a set of beliefs. For example,

Message meaning: If A believes (A share(K) B) and A sees $\{X\}_K$ then A believes(B said X).

$$\frac{A|\equiv (A \stackrel{K}{\longleftrightarrow} B), A \triangleleft \{X\}_{K}}{A|\equiv (B|\sim X)}$$

Belief Logics: Rules

Nonce verification: If A believes X is fresh and A believes B once said X, then A believes B believes X.

$$\frac{A|\equiv (\#(X)), A|\equiv (B|\sim X)}{A|\equiv (B|\equiv X)}$$

Jurisdiction: If A believes B has jurisdiction over X and A believes B believes X, then A believes X.

$$\frac{A|\equiv (B\Longrightarrow X), A|\equiv (B|\equiv X)}{A|\equiv X}$$

BAN Logic: Idealization

To get from protocol steps to logical inferences, we have a process called *idealization*. This attempts to turn the message sent into its intended semantics. For example, given the protocol step:

$$A \rightarrow B : \{A, K_{ab}\}_{K_{bs}}$$

If B knows the key K_{bs} , this tells us that K_{ab} is a key to communicate with A. An idealized version is:

$$A \to B : \{A \stackrel{\mathcal{K}_{ab}}{\longleftrightarrow} B\}_{\mathcal{K}_{bs}}$$

One purpose of idealization is to omit parts of the message that do not contribute to the beliefs of the recipients. *In BAN all plaintext is omitted since it can be forged.*

Idealization of the protocol is not defined unambiguously. It depends on the interpretation of the meaning of some steps.

Lessons

- The BAN logic has been an important tool for reasoning about protocols.
- It is a modal logic of belief with 10 primitives and a number of inference rules.

Next lecture: The BAN Logic: Needham-Schroeder