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What is Information

Just what is information? The following is the fundamental
paradigm of information theory:

Information is any content to be conveyed from the sender to
receiver. It is sent in the form of one or more messages. Our goal
is to quantify this sitution.
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Some Information Theory

Information theory is the field of study that quantifies the content
of messages and the capacity of channels on which information
may flow. It asks questions such as the following:

1 How much information is encoded in a particular message?

2 How efficiently can a given alphabet/language be transmitted?

3 What is the maximum capacity of a given transmission
medium?

4 How is that capacity or efficiency reduced by interference
/noise?

These questions all have very precise and deep answers, that are
beyond the scope of this course. We’ll only scratch the surface.
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Why Do We Care?

Information theory is very important in computer science. It affects
all communication, hardware design, protocol design, cryptography,
fault-tolerance, etc.

For example, in our current context it is useful to know how much
information can be transmitted over a specific covert channel. This
is the “bandwidth” of the channel.

If the bandwidth is sufficiently small, perhaps we want to ignore it,
but if it’s large that suggests a potential problem.
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Quantifying Information: Thought Experiment

How much information is contained in each of the following
messages? How do you judge?

A 1-bit binary number.

An n-bit binary number.

A single decimal digit.

A two digit decimal number.

“The attack will come at dawn.”

“One if by land; two if by sea.”

The King James Bible or the Collected Works of Poe.
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Information Content
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Quantifying Information

If you have n bits, you have 2n possible messages. Why?

Conversely, if you have 2n possible messages, then n bits is enough
to select unambiguously any single one of those. Why?

Aside: Mathematically, the information content is related to the
logarithm (base 2) of the size of the potential message space.

log2(x) is the value y such that x = 2y . E.g., log2(16) = 4 since
16 = 24. Can you see why 4 bits suffices to select one of 16
possible choices. Hint: think about binary trees.
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Binary Tree Representation

If we represent all possible choices in any decision as the leaves of
a “complete” binary tree. How long can any path be?

If there are n nodes, the longest path is bounded by log2 n.
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Information as Uncertainty

It is tempting to think that some messages are more important
than others. For example, leaking a decryption key may be more
costly than leaking some other message. That’s a semantic
approach to information.

Information theory can’t deal with that aspect of security. It can
only quantify the information content of a message in terms of the
space of possible messages that might have been sent or the
“uncertainty” on the receiver’s side of what message might have
been sent. That’s basically a syntactic approach in which the
symbols are uninterpreted.
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Information as Uncertainty

The information content of a message depends on the shared
knowledge of the sender and receiver and the size of the
message-space.

The amount of information in a message
sent increases with the uncertainty as to
what message actually will be sent.

No uncertainty means no information.

Intuitively, the information content is something like the logarithm
of the size of the potential message space. E.g., if there are four
possible messages, then a message has two bits of information.
Explain.
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Information as Uncertainty

“The concept in this theory at first seems disappointing and
bizarre—disappointing because it has nothing to do with meaning,
and bizarre because it deals not with a single message, but with
the statistical character of a whole ensemble of messages.”
–Warren Weaver

“The word ‘information’ relates not so much to what you do say, as
to what you could say. The mathematical theory of communication
deals with the carriers of information, symbols and signals, not
with information itself. That is, information is the measure of your
freedom of choice when you select a message.” –Warren Weaver
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Information Content as Bits

Information content is commonly measured in terms of bits. “Bit”
has two connotations, which are not the same:

the quantity of
information required to
disambiguate a choice
between two distinct
possibililities (continuous
quantity);
a binary digit (a discrete
quantity).
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Information Content as Bits

The information content of a
message is measured in bits. The
capacity of a channel is measured
in bits per second (bps).

In general, the best way of
transmitting (encoding) a
message is that way which
minimizes the number of bits
required, on average. What does
that mean?
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Information Content as Bits

Suppose I tell you that transmitting one out of 16 possible
messages A . . .P requires 4 bits of information be sent. Is this
true? Why or why not?

Let’s call the code using 4 bits per message the näıve
encoding—just number the messages and transmit the number as
our code.

It’s only näıve in the sense that it doesn’t require any thought.
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Information Content as Bits

Can you do better than 4 bits for sending one message? What
would it mean to do better?

How about transmitting n messages, each of which is one of 16
possible values? Does it matter that I transmit multiple messages?
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Information Content as Bits
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Probability and Encoding

Suppose you need to send 1000 messages, each of which can be
one of 16 possibilities. But on average 99.5% will be message 10.
Does it still require 4 × 1000 = 4000 bits to send your 1000
messages? How could you do better?

It is possible to come up with
an encoding that will do better
on average than the näıve
encoding. “On average” is
important here, because it may
do worse on some anomalous
cases.
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A Better Encoding

Msg Encoding

0 10000
1 10001
2 10010
.. ...
9 11001

10 0
11 11011
.. ...

15 11111

Consider this encoding.

Given 1000 messages, on average
995 of them will be message 10,
and 5 will be other messages.

Can you recover the original
sequence of messages? How?

On average, this encoding takes
995 + (5 · 5) bits or 1.02 bits per
message. This compares to 4 bits
per message for the näıve
encoding.
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Some Observations and Questions

Notice that we’ve gone from talking about the information content
of a single message to talking about that of a language or message
stream.

Our encoding is pretty good, but can we do even better? Is
there a limit to how well we can do?

We often operate under incomplete information. Are the other
15 possibilities all equally likely?

Computing the number of bits per message depends on
knowing the prior probabilities—how often each message
appears in an arbitrarily long sequence of messages.
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Some Observations and Questions

The “on average” part is
important; some sequences
would be less efficient under our
encoding. How could that
happen?
We used the “näıve encoding” as
our benchmark, but there are
much worse encodings.

Is it possible to find an optimal encoding? What would that
mean?

What properties must a reasonable encoding have?
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Encoding Properties

We insist that encoding be:

lossless: it must be possible to recover the entire sequence of
messages from the transmission;

uniquely decodable: for any encoded string, there must be only
one translation;

streaming: there must be no breaks in the encoding string.

Sufficient (but not necessary) for unique decodability is the
property of being prefix-free: the string representing any symbol
cannot be an initial prefix of the string representing any other
symbol.
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Unique Decodability

E.g., suppose you had a language containing the symbols A, B, C.
The following is not a uniquely decodable encoding:

A 1

B 0

C 10

Explain why this is not uniquely decodable.

A good clue is that it does not have the prefix-free property.

Note: A language can fail to have the prefix-free property, but still
be uniquely decodable. E.g., if the language above only had “A”
and “C” it would be uniquely decodable. But parsing such a
language may require arbitrary “look-ahead.”
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Exercise: Unique Decodability

Which of the following codes is uniquely decodable?

A B C D

code1 0 01 11 111

code2 0 01 110 111

code3 0 10 110 111

code4 1 10 110 111
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Entropy

Assume you know the relative frequency of the various symbols in
a language. Given the best possible encoding of the language, how
many bits (on average) do you have to transmit to convey a
messages of k symbols? What is the average number of bits per
symbol sent? This number is called the entropy of the language.

Entropy H is computed as follows. If pi is the probability of the ith
symbol in the language, then

From now on, all log’s are base 2.
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Entropy Example 1

Consider the flipping of a fair coin. There are two equally likely
outcomes, H and T, which we can represent as 0 and 1,
respectively.

What is the entropy of this language?

I.e., how many bits are required on
average to send one of a series of
outcomes of the experiment of
flipping the coin?

Would it be possible to do any better?
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Entropy Example 1

Solution: There are two possible outcomes, each of probability
0.5. Then:

h = −(0.5 × log 0.5 + 0.5 × log 0.5) = 1

This says that on average we can’t do any better than one bit to
transmit the result of one toss of the coin. Think about why that
is.

Therefore, the “näıve” encoding is actually the optimal encoding.
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Entropy Example 2

Suppose we have an
unbalanced coin that is three
times more likely to yield a
head than a tail.

What is the entropy of this
language? Do you think it will
be greater than 1 or less than
1? Why?

Remember what entropy
means!
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Entropy Example 2

Solution: There are two possible outcomes: H has probability 0.75
and T has probability 0.25. Then:

h = −(0.75 × log 0.75 + 0.25 × log 0.25) ≈ 0.811

This says that it’s theoretically impossible to encode this in a way
that uses less than 0.811 bits (on average) to transmit the result of
each toss of the coin. But is it possible to do better than 1 bit per
toss?

Note that this doesn’t give you an encoding more efficient than the
näıve encoding. Do we know that there is one? How can we
possibly find it?
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Fundamental Theorem

Claude Shannon proved a theorem,
which we’ll discuss shortly that says
that: there is always an encoding that
arbitrarily closely approaches the
entropy.

But finding the encoding may require some ingenuity.
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Entropy Example 2 Revisited

Notice: You can’t do better than one bit per flip if you transmit
the results in real time, i.e., as soon as each experiment completes.
Instead, you have to collect and encode a sequence of results.
Suppose we represent sequences of two flips at a time:

Result Prob. Code

HH 9/16 0
HT 3/16 10
TH 3/16 110
TT 1/16 111

How did we get those probabilities? Why that encoding?
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Entropy Example 2 Revisited

Result Prob. Code

HH 9/16 0
HT 3/16 10
TH 3/16 110
TT 1/16 111

On average, we can represent a series of 32 flips with 27 bits,
rather than 32 bits. Why? That yields an efficiency of 27/32 or
0.844. That’s not a bad approximation of the entropy. (0.811)

Exercise: Improve this by coding sequences of three flips. What is
the efficiency of that encoding? (.823) How about four flips?
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Entropy Example 3

Suppose you have a six-sided die that is unbalanced such that:

1 and 2 are equally likely;
3 and 4 are equally likely;
5 and 6 are equally likely;
1 is twice as likely as 3;
3 is three times as likely
as 5.

What are the relative probabilities of each outcome?
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Entropy Example 3

1 What is the “näıve” encoding for this language?

2 What is the entropy of this language?

3 Find an encoding that is more efficient than the näıve
encoding.

4 Argue that your encoding is more efficient than the näıve
encoding.
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An Aside: Randomness Extractors

Suppose you have a biased coin, like our coin that is three times
more likely to yield a head than a tail. This sequence of flips is not
random. But can you use this coin in such a way as to mimic a fair
coin?

Yes! Consider our unbalanced coin from Entropy Example 2:

Result Prob. Code

HH 9/16 0
HT 3/16 10
TH 3/16 110
TT 1/16 111

Notice that HT and TH are equally likely. Throw out all other
outcomes and use these as 0 and 1.
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An Aside: Randomness Extractors

John von Neumann gave such
a construction. This is called a
randomness extractor and
sometimes allows you to derive
a random sequence from
non-random data.

The notion of randomness is very important and related to entropy.
For example, if using a 128-bit key in a cryptographic algorithm,
you want 128 bits of entropy, meaning that the key contains as
much uncertainty as a 128-bit random string. This is seldom
achieved.
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Entropy Continued

As a special case, if we have n symbols, each of which is equally
probable, then the probability of any of them is 1/n. Then the
entropy for the language is:

h = −(log 1/n) = log n

For example, a fair die with six sides has 6 equally likely outcomes.
The entropy is:

h = −(log 1/6) = log 6 = 2.58

Hence, it requires 2.58 bits per symbol to transmit the result of a
toss of the die.
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Finding a Coding

How do you come up with an efficient encoding? The idea is to
use fewer bits for the items which occur most frequently, and more
bits for those that occur less frequently. (Samuel Morse knew this
instinctively. But is Morse code prefix-free? What gives?)

Huffman coding is guaranteed to find an efficient code for a given
language if you know the probabilities of language units. In fact, it
always uses less than one bit per symbol more than the entropy,
which is extremely efficient.

The entropy gives the theoretical minimum number of bits to
transmit the symbols in the language on average.
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Morse Code
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Entropy is Theoretical

Why is it that you can’t usually transmit as efficiently as the
entropy would predict? Consider sending one of 10 equally likely
values. It is related to the different senses of “bit.”

Entropy tells us what is possible in the long run. But...

“In the long run we are all dead.” –John Maynard Keynes
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Entropy Aside

Entropy measures the information content (or uncertainty in a
transmission). For that reason, entropy is relative to a particular
observer.

For example, before the winner of the Academy Award is
announced, there are five possible winners. But for the auditors
who stuffed the envelope, there isn’t any uncertainty, hence no
entropy. There may be more entropy for the Hollywood insider,
and even more for the viewer at home.

Almost never are all outcomes equally likely, but the prior
probabilities are often impossible to compute.
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Discrete Events

The flipping of a coin or a die are discrete and zero-memory
sources. A zero-memory source is one in which each symbol
(event) is independent of the context (i.e., does not depend on the
events that preceded it).

Information theory also addresses continuous behavior, but that’s
outside our scope.

Many language sources are far from being zero-memory. A source
in which a symbol in a string depends on n preceding symbols is an
nth order Markov source.
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Efficient Encoding

Huffman coding is guaranteed to find an efficient code for a given
language if you know the probabilities of language units. In fact, it
always uses less then one bit per symbol more than the entropy,
which is extremely efficient.

But, even if you know the entropy of a language, you may not
know the characteristics of a given text. Eg., you may know the
entropy of English, but not the characteristics of a given text file.
You can use adaptive coding to deal with this.
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Efficient Encoding: Lempel-Ziv

The Lempel-Ziv algorithm is used in many commercial text
compression utilities such as gzip. It builds a dictionary on the fly
according to the strings it encounters.

Lempel-Ziv is asymptotically optimal. That is, as the input text
length tends to infinity, the compression approaches the optimal
values predicted by information theory.
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Encoding Larger Units

Often a better encoding is possible for a given language if the
“units” of encoding are larger.

For example, suppose that you had 16 “letters” in the language,
but there were only 1024 “words,” each an average of 5 letters in
length.

To encode on a letter-by-letter basis, you might use 4 bits per
letter, and use an average 4 × 5 = 20 bits per word. But encoding
the words directly requires only (log 1024) = 10 bits per word.
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Source Entropy

The entropy of a language is a measure of the most efficient
possible encoding of the language.

The entropy of a message source is the amount of information
content that the source can produce in a given period. This is
measured in bits per second.

Any communication medium (channel) can transmit an arbitrary
amount of information, given enough time and unbounded
buffering capacity. But can a given channel transmit the
information in real time?
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Channel Capacity

The capacity of a channel is the number of bits that can be sent
per second over the channel. This is a property of the
communication medium and may be reduced by noise on the
channel.

The fundamental theorem of the noiseless channel (Shannon) says
the following: If a source has entropy h (bits per symbol) and a
channel can transmit C bits per second, then it is possible to
encode the signal is such a way as to transmit at an average rate
of (C/h) − ε symbols per second, where ε can be made arbitrarily
small. It is impossible to transmit at an average rate greater than
C/h.
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Noisy Channels

If a channel is noisy, it is possible to quantify the amount of
uncertainty in the channel. The average uncertainty that x was
transmitted when y was received is denoted hy (x) and is called the
equivocation of the channel.

For a symmetric channel, the uncertainty does not depend on
which symbol was sent. If a channel is not symmetric, the
uncertainly varies depending on which symbol was sent.

The equivocation is the average uncertainty of the message
recipient as to what message was actually sent.
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Noisy Channels (Cont.)

A somewhat surprising theorem proved by Shannon is the following:

Let a discrete channel have a capacity C and a discrete
source an entropy per second h. If h < C there exists
a coding system such that the output of the source can
be transmitted over the channel with an arbitrarily small
frequency of errors. If h > C it is possible to encode the
source so that the equivocation is less than h − C + ε,
where ε is arbitrarily small.

It is crucial to understand that the channel capacity in this
theorem is the computed capacity as reduced by the noise.
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Noisy Channels (Cont.)

The upshot of this is that a message can be transmitted reliably
over even a very noisy channel by increasing the redundancy of the
coding scheme.

Here “efficiency” means the ratio of the number of data bits to the
number of bits used to encode them.

Thus, covert channels in the system cannot be dismissed with the
argument that they are noisy and hence useless. You can always
get the message through by increasing redundancy.
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Entropy vs. Redundancy

In an intuitive sense, the difference between the efficiency of the
encoding and the entropy (theorical limit of efficiency) is a
measure of the redundancy in the encoding. Another way of
looking at this is: what is the most effective lossless compression
algorithm imaginable?

If you can find an encoding with efficiency matching the entropy,
then there is no redundancy in the encoding. We’ve seen at least
one example of that. What was it?

The standard encoding for English contains a lot of redundancy.
Hence the entropy is significantly lower than the encoding
efficiency of the language.

Fr xmpl, y cn prbbly gss wht ths sntnc sys, vn wth ll f th vwls
mssng. Tht ndcts tht th nfrmtn cntnt cn b xtrctd frm th rmnng
smbls.
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The Effect of Redundancy

Someone recently sent me this message. It illustrates the
redundancy of English text:

Aoccdrnig to rscheearch at Cmabirgde Uinervtisy, it de-
osn’t mttaer in waht oredr the ltteers in a wrod are, the
olny iprmoetnt tihng is taht the frist and lsat ltteer be at
the rghit pclae. The rset can be a ttoal mses and you can
sitll raed it wouthit porbelm. Tihs is bcuseae the huamn
mnid deos not raed ervey lteter by istlef, but the wrod as
a wlohe. Amzanig huh?

Spammers count on the ability of humans to decipher such text,
and the inability of computers to do so, when they scramble the
words in a message header to defeat anti-spam software. Care to
order some Vi@gra or Vigara?
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Entropy of English: Zero-Order

Suppose we want to transmit English text (26 letters and a space).
If we assume that all characters are equally likely, the entropy is:

h = −(log 1/27) = 4.75

This is the zero-order model of English. (Notice that this also
meets the “zero-memory” assumption mentioned before, though
those are different notions.)

This gives an approximation to the entropy. If it gave the “real”
entropy of English, then a message of n symbols could not be
transmitted in less than n × 4.75 bits. But the underlying
assumption is clearly false.
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Entropy of English: First-Order

In written or spoken English, some symbols occur much more
frequently than others.
letter frequency letter frequency letter frequency letter frequency

a 0.08167 b 0.01492 c 0.02782 d 0.04253
e 0.12702 f 0.02228 g 0.02015 h 0.06094
i 0.06966 j 0.00153 k 0.00772 l 0.04025
m 0.02406 n 0.06749 o 0.07507 p 0.01929
q 0.00095 r 0.05987 s 0.06327 t 0.09056
u 0.02758 v 0.00978 w 0.02360 x 0.00150
y 0.01974 z 0.00074

Assuming that all symbols are independent of one another, but
follow the probabilities above, the entropy is 4.219 bits per symbol.
This is the “first-order” model of English (but still “zero-memory.”)
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Entropy of English: Higher-Order

The assumption of independence (zero memory) is also incorrect.
For example, given a “Q” in English text, it is overwhelmingly
likely that the next letter will be “U”, much more likely than the
probability of “U” in arbitrary English text. The following shows
the most common digrams and trigrams in English.

Digrams Trigrams
EN ENT
RE ION
ER AND
NT ING
TH IVE
ON TIO
IN FOR
TR OUR
AN THI
OR ONE
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Entropy of English: Higher-Order

We can compute tables of the likelihood of digrams (two-letter
combinations), trigrams, etc. Adding digrams to the computation
gives a second-order model; adding trigrams gives a third-order
model; etc.

A third-order model yields 2.77 bits per symbol. The actual
entropy is the “limit” of this process of taking higher and higher
order models.

Estimates by Shannon based on human experiments have yielded
values as low as 0.6 to 1.3 bits per symbol.
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What’s Wrong With This?

Recall that: Lempel-Ziv is asymptotically optimal. That is, as the
input text length tends to infinity, the compression approaches the
optimal values predicted by information theory.

Suppose I wanted to compute the “actual” entropy of English.
Couldn’t I do the following:

Get a very large volume of English text.

Run it through the Lempel-Ziv algorithm.

Compute the bits/symbol of the result.

What’s wrong with this argument?
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Entropy of Arbitrary Languages

Any computed estimate of the entropy of English is based on
averages in large volumes of text. But averages may not apply to
specific texts.

Consider the following text from the 267-page novel Gadsby, by
Earnest Vincent Wright (1939).

Upon this basis I am going to show you how a bunch of
bright young folks did find a champion; a man with boys
and girls of his own; a man of so dominating and happy
individuality that Youth is drawn to him as is a fly to a
sugar bowl. It is a story about a small town. It is not a
gossipy yarn; nor is it a dry, monotonous account, full of
such customary “fill-ins” as “romantic moonlight casting
murky shadows down a long winding country road.”
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Entropy and Randomness

Note that entropy can be used to measure the amount of
“redundancy” in the encoding. If the information content of a
message is equal to the length of the encoded message, there is no
redundancy.

Some sources define a random string as one that cannot be
represented any more efficiently. I.e., no compression is possible for
a truly random string.
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Redundancy and Cryptography

Redundancy is crucial in understanding written or spoken
communication. It also plays a vital role in cryptography.

Any knowledge you can discover about the plaintext of an encoded
message provides help in decoding it. Why?

1 The less redundancy in the plaintext, the harder the
cryptanalyst’s task.

2 For that reason, it is useful to compress before encrypting.

3 A good encryption algorithm will ensure that redundancy in
the plaintext is not mirrored in the ciphertext.

4 In fact, a really good algorithm yields output that is
indistinguishable from random, which means that it is useless
to compress after encrypting.
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