
Shilpi Goel
shigoel@cs.utexas.edu

Department of Computer Science
The University of Texas at Austin

Computer Architecture and Program Analysis

Formal Verification of
x86 Machine-Code Programs

Software and Reliability

2

Can we rely on our software systems?

Recent example of a serious bug:

CVE-2016-5195 or “Dirty COW”

• Privilege escalation vulnerability in Linux

• E.g.: allowed a user to write to files intended to be read only

• Copy-on-Write (COW) breakage of private read-only memory mappings

• Existed since around v2.6.22 (2007) and was fixed on Oct 18, 2016

Formal Verification of Software: Example 1

3

Software Formal Verification: proving or disproving that the
implementation of a program meets its specification using mathematical
techniques

Formal Verification of Software: Example 1

3

Software Formal Verification: proving or disproving that the
implementation of a program meets its specification using mathematical
techniques

Suppose you needed to count the number of 1s in the binary
representation of a natural number (population count).

Specification:
popcountSpec(v): [v: natural number]
if v <= 0 then
 return 0
else
 lsb = v & 1
 v = v >> 1
 return (lsb + popcountSpec(v))
endif

Formal Verification of Software: Example 1

4Source: Sean Anderson’s Bit-Twiddling Hacks

popcountSpec(v): [v: natural number]
if v <= 0 then
 return 0
else
 lsb = v & 1
 v = v >> 1
 return (lsb + popcountSpec(v))
endif

Specification:

Formal Verification of Software: Example 1

4

Implementation:
int popcount_32 (unsigned int v) {
 v = v - ((v >> 1) & 0x55555555);
 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
 v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
 return(v);
}

Source: Sean Anderson’s Bit-Twiddling Hacks

popcountSpec(v): [v: natural number]
if v <= 0 then
 return 0
else
 lsb = v & 1
 v = v >> 1
 return (lsb + popcountSpec(v))
endif

Specification:

Formal Verification of Software: Example 1

4

Implementation:
int popcount_32 (unsigned int v) {
 v = v - ((v >> 1) & 0x55555555);
 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
 v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
 return(v);
}

Source: Sean Anderson’s Bit-Twiddling Hacks

popcountSpec(v): [v: natural number]
if v <= 0 then
 return 0
else
 lsb = v & 1
 v = v >> 1
 return (lsb + popcountSpec(v))
endif

Specification:

Do the specification and implementation behave the same way for all inputs?

Formal Verification of Software: Example 2

5

Suppose you needed to check if a given natural number is a power of 2.

Specification:

isPowerOfTwoSpec(x): [x: natural number]
if x == 0 then
 return 0
else
 if x == 1 then
 return 1
 else
 if remainder(x,2) == 0 then
 return isPowerOfTwoSpec(x/2)
 else
 return 0
 endif
 endif
endif

Formal Verification of Software: Example 2

6

Can you trust your specification?

Source: Sean Anderson’s Bit-Twiddling Hacks

Formal Verification of Software: Example 2

6

Can you trust your specification?

Correctness of isPowerOfTwoSpec:

1. If isPowerOfTwoSpec(v) returns 1, then there exists a natural
number n such that v = 2n.

2. If v = 2n, where n is a natural number, then isPowerOfTwoSpec(v)
returns 1.

Source: Sean Anderson’s Bit-Twiddling Hacks

Formal Verification of Software: Example 2

6

Can you trust your specification?

Correctness of isPowerOfTwoSpec:

1. If isPowerOfTwoSpec(v) returns 1, then there exists a natural
number n such that v = 2n.

2. If v = 2n, where n is a natural number, then isPowerOfTwoSpec(v)
returns 1.

Implementation:
bool powerOfTwo (long unsigned int v) {
 bool f;
 f = v && !(v & (v - 1));
 return f;
}

Source: Sean Anderson’s Bit-Twiddling Hacks

Formal Verification of Software: Example 2

6

Can you trust your specification?

Correctness of isPowerOfTwoSpec:

1. If isPowerOfTwoSpec(v) returns 1, then there exists a natural
number n such that v = 2n.

2. If v = 2n, where n is a natural number, then isPowerOfTwoSpec(v)
returns 1.

Implementation:
bool powerOfTwo (long unsigned int v) {
 bool f;
 f = v && !(v & (v - 1));
 return f;
}

Do the specification and implementation behave the same way for all inputs?

Source: Sean Anderson’s Bit-Twiddling Hacks

Inspection of a Program’s Behavior

• Testing:

x���������	
�������������������� ���������	
�������������������� Exhaustive analysis is infeasible

• Formal Verification:

✓ Wide variety of techniques

‣ Lightweight: e.g., checking if array indices are within bounds

‣ Heavyweight: e.g., proving functional correctness

7

8

Functional Correctness:
RAX = popcountSpec(v)

specification function

popcountSpec(v):
[v: unsigned int]

if v <= 0 then
 return 0
else
 lsb = v & 1
 v = v >> 1
 return (lsb + popcountSpec(v))
endif

popcount_64:
89 fa mov %edi,%edx
89 d1 mov %edx,%ecx
d1 e9 shr %ecx
81 e1 55 55 55 55 and $0x55555555,%ecx
29 ca sub %ecx,%edx
89 d0 mov %edx,%eax
c1 ea 02 shr $0x2,%edx
25 33 33 33 33 and $0x33333333,%eax
81 e2 33 33 33 33 and $0x33333333,%edx
01 c2 add %eax,%edx
89 d0 mov %edx,%eax
c1 e8 04 shr $0x4,%eax
01 c2 add %eax,%edx
48 89 f8 mov %rdi,%rax
48 c1 e8 20 shr $0x20,%rax
81 e2 0f 0f 0f 0f and $0xf0f0f0f,%edx
89 c1 mov %eax,%ecx
d1 e9 shr %ecx
81 e1 55 55 55 55 and $0x55555555,%ecx
29 c8 sub %ecx,%eax
89 c1 mov %eax,%ecx
c1 e8 02 shr $0x2,%eax
81 e1 33 33 33 33 and $0x33333333,%ecx
25 33 33 33 33 and $0x33333333,%eax
01 c8 add %ecx,%eax
89 c1 mov %eax,%ecx
c1 e9 04 shr $0x4,%ecx
01 c8 add %ecx,%eax
25 0f 0f 0f 0f and $0xf0f0f0f,%eax
69 d2 01 01 01 01 imul $0x1010101,%edx,%edx
69 c0 01 01 01 01 imul $0x1010101,%eax,%eax
c1 ea 18 shr $0x18,%edx
c1 e8 18 shr $0x18,%eax
01 d0 add %edx,%eax
c3 retq

Example: Pop-Count Program

9

Case Study: Pop-Count Program

(defthm x86-popcount-64-symbolic-simulation
 (implies
 (and (x86p x86)
 (equal (model-related-error x86) nil)
 (unsigned-byte-p 64 n)
 (equal n (read 'register *rdi* x86))
 (equal *popcount-64-program*
 (read 'memory
 (address-range
 (read 'pc x86)
 (len *popcount-64-program*))
 x86)))
 (equal (read 'register *rax* (x86-run *num-of-steps* x86))
 (popcountSpec n))))

Heavyweight Formal Verification

10

Heavyweight Formal Verification

10

• Build a mathematical or formal model of programs

• Prove theorems about this model in order to establish program properties

Heavyweight Formal Verification

10

• Build a mathematical or formal model of programs

• Prove theorems about this model in order to establish program properties

ISA model

Heavyweight Formal Verification

10

• Build a mathematical or formal model of programs

• Prove theorems about this model in order to establish program properties

ISA model

Instruction Set Architecture: interface between hardware and software

- Defines the machine language

- Specification of state (registers, memory), machine instructions,

instruction encodings, etc.

Heavyweight Formal Verification

10

• Build a mathematical or formal model of programs

• Prove theorems about this model in order to establish program properties

ISA model

Instruction Set Architecture: interface between hardware and software

- Defines the machine language

- Specification of state (registers, memory), machine instructions,

instruction encodings, etc.

• An ISA model specifies the behavior of each machine instruction in
terms of effects made to the processor state.

Heavyweight Formal Verification

10

• Build a mathematical or formal model of programs

• Prove theorems about this model in order to establish program properties

ISA model

Instruction Set Architecture: interface between hardware and software

- Defines the machine language

- Specification of state (registers, memory), machine instructions,

instruction encodings, etc.

• An ISA model specifies the behavior of each machine instruction in
terms of effects made to the processor state.

• All high-level programs compile down to machine-code programs.
- A program is just a sequence of machine instructions.

Heavyweight Formal Verification

10

• Build a mathematical or formal model of programs

• Prove theorems about this model in order to establish program properties

ISA model

Instruction Set Architecture: interface between hardware and software

- Defines the machine language

- Specification of state (registers, memory), machine instructions,

instruction encodings, etc.

• An ISA model specifies the behavior of each machine instruction in
terms of effects made to the processor state.

• All high-level programs compile down to machine-code programs.
- A program is just a sequence of machine instructions.

• We can reason about a program by inspecting the cumulative effects of its
constituent instructions on the machine state.

Why Not Use Abstract Machine Models?

11

Why Not Use Abstract Machine Models?

11

Why x86 Machine-Code Verification?

• Why not high-level code verification?

x���������	
�������������������� ���������	
�������������������� Sometimes, high-level code is unavailable (e.g., malware)

x���������	
�������������������� ���������	
�������������������� High-level verification frameworks do not address compiler bugs

✓ Verified/verifying compilers can help

 x���������	
�������������������� ���������	
�������������������� But these compilers typically generate inefficient code

x���������	
�������������������� Need to build verification frameworks for many high-level languages

• Why x86?

✓ x86 is in widespread use

12

Overview

Goal: Specify and verify properties of x86 programs
- E.g., correctness w.r.t. behavior, security, resource usage, etc.

13

Overview

Goal: Specify and verify properties of x86 programs
- E.g., correctness w.r.t. behavior, security, resource usage, etc.

13

• Program property: statement about a program’s behavior
- One state, set of states, relationship between a set of final & initial states

x860 x861

specify:
in terms of states of

computation

Overview

Goal: Specify and verify properties of x86 programs
- E.g., correctness w.r.t. behavior, security, resource usage, etc.

13

• Program property: statement about a program’s behavior
- One state, set of states, relationship between a set of final & initial states

x860 x861

specify:
in terms of states of

computation

⤻

• Program’s computation: how the execution of each instruction
transforms one state to another

Overview

Goal: Specify and verify properties of x86 programs
- E.g., correctness w.r.t. behavior, security, resource usage, etc.

13

• Program property: statement about a program’s behavior
- One state, set of states, relationship between a set of final & initial states

x860 x861

specify:
in terms of states of

computation

⤻
verify:

reason about symbolic
executions

• Program’s computation: how the execution of each instruction
transforms one state to another

• Symbolic Executions: a final (or next) x86 state is described in terms of
symbolic updates made to the initial x86 state

- Allows consideration of many, if not all, possible executions at once

Formal Tool Used: ACL2 Theorem-Proving System

14

• ACL2: A Computational Logic for Applicative Common Lisp ︎

- Programming Language

- Mathematical Logic

- ︎Mechanical Theorem Prover

• See ACL2 Home Page for more details.

- Extensive documentation!

- ACL2 Research Group located at GDC 7S

http://www.cs.utexas.edu/users/moore/acl2/

x86 ISA Model

15

x86 ISA Model

Interpreter-Style Operational Semantics: x86 ISA model is a machine-
code interpreter written in ACL2’s formal logic

- x86 State: specifies the components of the ISA

- Run Function: takes n steps or terminates early if an error occurs

- Step Function: fetches, decodes, and executes one instruction

- Instruction Semantic Functions: specifies instructions’ behavior

16

x860 x861 x86k…
Step 1

A Run of the x86 Interpreter that executes k instructions

Step 2 Step k

Run Function

Recursively defined interpreter that specifies the x86 model

run(n, x86):
if n == 0 then
 return x86
else
 if model-related error encountered then
 return x86
 else
 run(n - 1, step(x86))
 end if
end if

17

Step Function

State-transition function that corresponds to the execution of a single x86
instruction

step(x86):
pc = rip(x86)
[prefixes, opcode, ... , imm] = Fetch-and-Decode(pc, x86)
case opcode:
 #x00 -> add-semantic-fn(prefixes, ... , imm, x86)

 #xFF -> inc-semantic-fn(prefixes, ... , imm, x86)

18

Instruction Semantic Functions

• A semantic function describes the effects of executing an instruction.
- Input: x86 state and decoded parts of the instruction
- Output: next x86 state

• Every instruction has its own semantic function.

19

add-semantic-fn(prefixes, ... , imm, x86):
operand1 = getOperand1(prefixes, ... , imm, x86)
operand2 = getOperand2(prefixes, ... , imm, x86)
resultSum = fix(operand1 + operand2, ...)
resultFlags = computeFlags(operand1, operand2, result, x86)
x86 = updateState(resultSum, dst, resultFlags)
return x86

Obtaining the x86 ISA Specification

20

~3000 pages
~3400 pages

__asm__ volatile
("stc\n\t" // Set CF.
 "mov $0, %%eax\n\t" // Set EAX = 0.
 "mov $0, %%ebx\n\t" // Set EBX = 0.
 "mov $0, %%ecx\n\t" // Set ECX = 0.
 "mov %4, %%ecx\n\t" // Set CL = rotate_by.
 "mov %3, %%edx\n\t" // Set EDX = old_cf = 1.
 "mov %2, %%eax\n\t" // Set EAX = num.
 "rcl %%cl, %%al\n\t" // Rotate AL by CL.
 "cmovb %%edx, %%ebx\n\t" // Set EBX = old_cf if CF = 1.
 // Otherwise, EBX = 0.
 "mov %%eax, %0\n\t" // Set res = EAX.
 "mov %%ebx, %1\n\t" // Set cf = EBX.

 : "=g"(res), "=g"(cf)
 : "g"(num), "g"(old_cf), "g"(rotate_by)
 : "rax", "rbx", "rcx", "rdx");

Running tests on x86 machines

x86 State

21

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Focus: Intel’s 64-bit mode
x860 x861

⤻

Source: Intel Manuals

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

XCR0 (XFEM)

x86 State

21

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Focus: Intel’s 64-bit mode
x860 x861

⤻

Source: Intel Manuals

Model Validation

How can we know that our model faithfully represents the x86 ISA?

Validate the model to increase trust in the applicability of formal analysis

22

Symbolic Execution

23

Supporting Symbolic Execution

24

Rules (theorems) describing interactions between these reads and writes
to the x86 state enable symbolic execution of programs.

add %edi, %eax
je 0x400304

1. read instruction from mem

2. read operands

3. write sum to eax

4. write new value to flags

5. write new value to pc

1. read instruction from mem

2. read flags

3. write new value to pc

25

y

memory

non-interference

Program
Order

i j

Read-over-Write Theorem #1

25

y

Wi(x) memory

non-interference

Program
Order

x

i j

Read-over-Write Theorem #1

25

y

Wi(x)

Rj: y

memory

non-interference

Program
Order

x

i j

Read-over-Write Theorem #1

26

memory

i

overlap

Read-over-Write Theorem #2

Program
Order

26

Wi(x) memory

x

i

overlap

Read-over-Write Theorem #2

Program
Order

26

Wi(x)

Ri: x

memory

x

i

overlap

Read-over-Write Theorem #2

Program
Order

27

memory

independent writes commute safely

i j

Program
Order

Write-over-Write Theorem #1

27

memory

independent writes commute safely

Wi(x)

i j

x

Program
Order

Write-over-Write Theorem #1

27

memory

independent writes commute safely

Wi(x)

i j

x y

Wj(y)

Program
Order

Write-over-Write Theorem #1

27

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Program
Order

Write-over-Write Theorem #1

Program
Order

27

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Wj(y)

y

Program
Order

Write-over-Write Theorem #1

Program
Order

27

=

memory

independent writes commute safely

memory

Wi(x)

i j

x y

Wj(y)

i j

Wj(y)

Wi(x)

x y

Program
Order

Write-over-Write Theorem #1

Program
Order

28

memory

visibility of writes

i

Write-over-Write Theorem #2

Program
Order

28

memory

visibility of writes

Wi(x)

i

x

Write-over-Write Theorem #2

Program
Order

28

memory

visibility of writes

Wi(x)

i

Wi(y)

y

Write-over-Write Theorem #2

Program
Order

28

=

memory

visibility of writes

memory

Wi(x)

i

Wi(y)

i

y

Write-over-Write Theorem #2

Program
Order

Program
Order

28

=

memory

visibility of writes

memory

Wi(x)

i

Wi(y)

i

Wi(y)

y

y

Write-over-Write Theorem #2

Program
Order

Program
Order

Symbolic Execution

29

(implies
 (preconditions loc val x86)
 (let ((old-rbx (read 'register *rbx* x86))
 (old-pc (read 'pc x86)))
 (equal
 (x86-run (clk) x86)
 (write 'register *rax* old-rbx
 (write 'pc (+ 18 old-pc)
 (write 'memory loc val x86))))))

These read-over-write and write-over-write lemmas operate on symbolic
expressions that describe the program’s behavior.

Also, we can project out relevant parts of the resulting state.

Conclusions

30

What I Haven’t Talked About Today…

31

1. How to prove theorems using a mechanical theorem prover
- Useful to reason about both hardware and software
- Fall’16 Grad-level Course: Programming Languages
- Spring’17 Grad-level Course: Recursion and Induction

2. Supervisor-mode features of the x86 ISA
- Useful for developing and analyzing kernel programs
- An advanced architecture class
- An OS class

Opportunities for Future Research

32

Operating System Verification

detect reliance on non-portable or
undefined behaviors

User-friendly Program Analysis

automate the discovery of
preconditions

Multi-process/threaded Program
Verification

reason about concurrency-related
issues

Reasoning about the Memory
System

determine if caches are (mostly)
transparent, as intended

Firmware Verification

formally specify software/hardware
interfaces

Micro-architecture Verification

x86 ISA model serves as a build-to
specification

Resources

33

• See ACL2 Home Page
• Talk to people on GDC 7S
• See some publications

We have exciting research and engineering projects in this area!
Please feel free to email if you want to know more.

http://www.cs.utexas.edu/users/moore/acl2/

Publications

Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann. Abstract Stobjs and Their
Application to ISA Modeling. In Proceedings of the ACL2 Workshop 2013, EPTCS 114,
pp. 54-69, 2013

Shilpi Goel and Warren A. Hunt, Jr. Automated Code Proofs on a Formal Model of the
x86. In Verified Software: Theories, Tools, Experiments (VSTTE’13), volume 8164 of
Lecture Notes in Computer Science, pages 222– 241. Springer Berlin Heidelberg, 2014

Shilpi Goel, Warren A. Hunt, Jr., Matt Kaufmann, and Soumava Ghosh. Simulation and
Formal Verification of x86 Machine-Code Programs That Make System Calls. In
Proceedings of the 14th Conference on Formal Methods in Computer-Aided Design
(FMCAD’14), pages 18:91–98, 2014

Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann. Engineering a Formal, Executable
x86 ISA Simulator for Software Verification. In Provably Correct Systems (ProCoS), 2015

Shilpi Goel. Formal Verification of Application and System Programs Based on a
Validated x86 ISA Model. Ph.D. Dissertation, The University of Texas at Austin, 2016

34

[Source Code]
Github

[Documentation]
x86isa in the ACL2+Community Books Manual

https://github.com/acl2/acl2/tree/master/books/projects/x86isa
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA

