A Simplistic Translation Scheme

CS429: Computer Organization and Architecture e ASCH source file Problems:
Linking | & 11 o Efficiency: small change
Compiler requires complete
Dr. Bill Young re-compilation.
Department of Computer Sciences ms o Modularity: ha.rd to share
University of Texas at Austin common functions (e.g.,
printf).
Assembler . o
Solution: Static linker (or
Last updated: Apl’” 5, 2018 at 09:23 Binary executable object file linker)'
P (memory image on disk)

CS429 Slideset 23: 1 Linking | CS429 Slideset 23: 2 Linking |

Better Scheme Using a Linker Linking

Linking is the process of

me ac ASClisource files combining various pieces
of code and data into a A linker takes representations of separate program modules and
Compiler | | Compiler single file that can be . P) P prog
N combines them into a single executable.
loaded (copied) into
m.s as memory and executed. This involves two primary steps:
Linking could happen at: Q@ Symbol resolution: associate each symbol reference
Assembler | | Assembler I throughout the set of modules with a single symbol definition.
@ compile time; _ _ _ _
Separately compiled o load time: ® Re/.ocat/on: associate a memory location with each symbol
e 8 relocatable object fles o definition, and modify each reference to point to that location.
@ run time.
Linker (Id)
Must somehow tell a

Executable object file module about symbols

p (co.de ar'ld data for all functions from other modu/es.
defined in m.c and a.c)

CS429 Slideset 23: 3 Linking | CS429 Slideset 23: 4 Linking |

A compiler driver coordinates all steps in the translation and
linking process.

o Typically included with each compilation system (e.g., gcc).

o Invokes the preprocessor (cpp), compiler (ccl), assembler
(as), and linker (Id).

@ Passes command line arguments to the appropriate phases

Example: Create an executable p from m.c and a.c:

> gcc —02 —v —0 p m.c a.c

cpp [args] m.c /tmp/cca07630.i

ccl /tmp/cca07630.i m.c —02 [args] —o /tmp/cca07630.s

as [args] —o /tmp/cca076301.0 /tmp/cca07630.s

<similar process for a.c>

ld —o p [system obj files] /tmp/cca076301.0 /tmp/
cca076302.0

>

CS429 Slideset 23: 5 Linking |

What Does a Linker Do?

Translating the Example Program Role of the Assembler

o Translate assembly code (compiled or hand generated) into
machine code.

o Translate data into binary code (using directives).
@ Resolve symbols—translate into relocatable offsets.

o Error checking:

o Syntax checking;
o Ensure that constants are not too large for fields.

CS429 Slideset 23: 6 Linking |

Why Linkers?

Merges object files

o Merges multiple relocatable (.0) object files into a single
executable object file that can be loaded and executed.

Resolves external references
@ As part of the merging process, resolves external references.

o External reference: reference to a symbol defined in another
object file.

Relocates symbols

@ Relocates symbols from their relative locations in the .o files
to new absolute positions in the executable.

@ Updates all references to these symbols to reflect their new

positions.
o References can be in either code or data:
o code: a(); /* reference to symbol a */

o data: *xp = &x; /* reference to symbol x */

CS429 Slideset 23: 7 Linking |

Modularity

@ Programs can be written as a collection of smaller source files,
rather than one monolithic mass.

@ Can build libraries of common functions shared by multiple
programs (e.g., math library, standard C library)

Efficiency
o Time:
o Change one source file, recompile, and then relink.
o No need to recompile other source files.
@ Space:
o Libraries of common functions can be aggregated into a single
file.
o Yet executable files and running machine images contain only
code for the functions they actually use.

CS429 Slideset 23: 8 Linking |

Example C Program Merging Relocatable Object Files

Relocatable object files are merged into an executable by the
Linker. Both are in ELF (Executable and Linkable Format).

a.c headers
. system code
m.c extern Int e; system code text Y.
int = 7; system data .data main() ot
nte =0 int xep = &e; a0 :
. . int x = 15;
int main () int y: more system code
' main() text
{ int = : —— system data
} e =2l int a() inte =7 data T inte =7
{ ; _ .data
return *xep + X + vy; int *ep = &e
} int x = 15
a() text
: uninitialized data .bss
int *ep = &e
.data
intx =15 .symtab
. .debug
inty .bss

CS429 Slideset 23: 9 Linking | CS429 Slideset 23: 10 Linking |

Relocating Symbols and Resolving External References Relocating Symbols and Resolving External References (2)

@ Symbols are lexical entities that name functions and variables.

@ Each symbol has a value (typically a memory address).

. . a.c
@ Code consists of symbol definitions and references.

. extern int e;
@ References can be either local or external.

m.c int xep = &e; /] def of global ep, ref to
// external symbol e
int e =7; // def of global e int x = 15; // def of global x
int y; // def of global y
int main() {
int r =a(); // ref to external symbol a int a() { // def of global a
exit (0); // ref to external symbol exit return xept+x+y; // refs of globals ep, x, vy
// (defined in libc.so) 1

}

Note that e is locally defined, but global in that it is visible to all
modules. Declaring a variable static limits its scope to the current
file module.

CS429 Slideset 23: 11 Linking | CS429 Slideset 23: 12 Linking |

m.o Relocation Info a.o0 Relocation Info (.text)

. . Disassembly of section .text
Disassembly of section .text

00000000 <a>:
00000000 <main >: a.c 0: EE ushl %eb
m.c 0: 55 pushl %ebp 1. 8b 15 00 00 00 movl 0x0, %ed
: 1: 89 e5 movl %esp, %ebp extern int e; 6: 00 mev el
int e =7, 3: e8 fc ff ff ff call 4<main+O0x4> . ' 3. R.386.32 e
4: R-386.PC32 a int xep = &e; 7. a1 00 00 00 00 movl 0w0, %
int main() { 8: 6a 00 pushl $0x0 int x = 15; e 8. R 386 80 . ¥
i . . t : . - -
int r =a(); a: e8 fc ff ff ff call b<ma|n+9xb> nty c: 89 e5 movl %esp, %ebp
exit (0); b: R-386-PC32 exit int a() { e: 03 02 addl (%edx),%eax
} f 90 nop return 10: 89 ec movl %ebp, %esp
Di bl] i dat vep + x + y; 1? 88 05 00 00 00 addl 0x0, %eax
Source: Ob_]dump IsassemDbly OfT section .data 1 : 14: R.386.32 y
00000000 <e>: 18: 5d popl %ebp
0: 07 00 00 0O 19: 3c ret

CS429 Slideset 23: 13 Linking | CS429 Slideset 23: 14 Linking |

a.o Relocation Info (.data) Strong and Weak Symbols

Program symbols are either strong or weak.
a.c
strong: procedures and initialized globals

extern int e; . . k- initialized elobal
Disassembly of section .data weak: uninitialized globals
intoep = ke 00000000 <ep>: This doesn’t apply to purely local variables.
int x = 15; 0: 00 00 00 00
int vy; 0: R_386_32 e
00000004 <x>:
int a() { 4: 0f 00 00 00 pl.c p2.c
} return xep 4 x 4 y; int foo = 5; // foo: strong int foo; // foo: weak here
pl() { // pl: strong p2() { // p2: strong
} }

CS429 Slideset 23: 15 Linking | CS429 Slideset 23: 16 Linking |

Linker Symbol Rules Linker Puzzles

What happens in each case?

Rule 1: A strong symbol can only appear once. I.:Ile 1 File 2 Result
int x;

Rule 2: A weak symbol can be overridden by a strong symbol of I.)l() U I.)l() b
int x; int x;

the same name. p10 {} p20 {}

@ References to the weak symbol resolve to the strong symbol. int x; double x;

inty; p20 {}

Rule 3: If there are multiple weak symbols, the linker can pick one plO {}

arbitrarily. int x=7; | double x;
int y=5; | p20 {}
p1O {}
int x=7; | int x;
plO {} | p20 {}

CS429 Slideset 23: 17 Linking | CS429 Slideset 23: 18 Linking |
Linker Puzzles The Complete Picture
m.c a.c
Think carefully about each of these. l l
Translators Translators
File 1 File 2 Result (ccl, as) (ccl, as)
int x; Link time error: two strong symbols (p1)
p1O {} | ptO {} 1 1
int x; int x; References to x will refer to the same m.o a.o libwhatever.a
p10O {} p20 {} unitialized int. What you wanted? \ / /
int x; double x; | Writes to x in p2 might overwrite y!
inty; p20 {} That's just evil!)
p10 {} Linker (Id)
int x=7; | double x; | Writes to x in p2 might overwrite y!
int y=5; | p20 {} Very nasty! 1 .
p10O {} P libc.so libm.so
int x=7; | int x; References to x will refer to the same l / /
10 20 initialized variable.
P il P 0 e = Loader/Dynamic Linker
. (Id-linux.so)
Nightmare scenario: two identical weak structs, compiled by
different compilers with different alignment rules. 1
o

CS429 Slideset 23: 19 Linking | CS429 Slideset 23: 20 Linking |

