
CS429: Computer Organization and Architecture
Introduction

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: January 22, 2020 at 14:37

CS429 Slideset 1: 1 Intro to Computer Systems

Acknowledgement

The slides used this semester are derived from slides originally
prepared by the textbook authors, Randall Bryant and David
O’Hallaron.

They were modified with permission and reformatted for use in our
class. You should consider them as copyright material; do not

repost them anywhere.

CS429 Slideset 1: 2 Intro to Computer Systems

Theme of the course

Great realities of computer science

How this class fits into the CS curriculum

CS429 Slideset 1: 3 Intro to Computer Systems

Abstraction is our Friend

Most of what we study in Computer Science is really about a
hierarchy of abstractions! Without abstraction, we wouldn’t be

able to accomplish much.

CS429 Slideset 1: 4 Intro to Computer Systems

Abstraction vs. Reality

Abstraction is good, but don’t forget reality!

Most of your courses to date have emphasized abstraction.

High level programming languages

Abstract data types

Asymptotic analysis

These abstractions have limits!

Especially in the presence of bugs

Need to understand underlying implementations

Need to have a working understanding of architecture

CS429 Slideset 1: 5 Intro to Computer Systems

Desired Outcomes

Useful outcomes!

Know “stuff” that all computer scientists should know

Become more effective programmers

Able to find and eliminate bugs efficiently
Able to tune program performance

Prepare for later “systems” classes: Compilers, Operating
Systems, Networks, Computer Architecture, Embedded
Systems, many others.

Hint: Hang onto your book. You’ll be using this same book (3rd
edition) in CS439.

CS429 Slideset 1: 6 Intro to Computer Systems

Great Reality 1

Ints are not Integers; Floats are not Reals.

Is x2 ≥ 0? For floats, yes. For ints, not necessarily.

40000 ∗ 40000 → 1600000000

50000 ∗ 50000 →??

CS429 Slideset 1: 7 Intro to Computer Systems

Floats are not Reals

Is (x + y) + z = x + (y + z)? For int’s: yes. For floats, maybe not.

(1e20 + −1e20) + 3.14 → 3.14

1e20 + (−1e20 + 3.14) →??

CS429 Slideset 1: 8 Intro to Computer Systems

Treat CS as an Experimental Science

Get into the habit of writing programs to experiment with the
architecture:

v o i d main () {
p r i n t f (” 40000 ∗ 40000 = %d\n” , 40000 ∗ 40000) ;
p r i n t f (” 50000 ∗ 50000 = %d\n” , 50000 ∗ 50000) ;
p r i n t f (”1 e20 + (−1e20 + 3 . 1 4) = %f \n” , 1 e20 + (−1e20

+ 3 . 1 4)) ;
p r i n t f (” (1 e20 + −1e20) + 3.14 = %f \n” , (1 e20 + −1e20)

+ 3 . 1 4) ;
}

> gcc t e s t e r . c
> a . out
40000 ∗ 40000 = 1600000000
50000 ∗ 50000 = −1794967296
1 e20 + (−1e20 + 3 . 1 4) = 0.000000
(1 e20 + −1e20) + 3.14 = 3.140000

CS429 Slideset 1: 9 Intro to Computer Systems

Computer Arithmetic

Computer arithmetic does not generate random values. Arithmetic
operations have important mathematical properties.

But not the “usual” properties of arithmetic.

Due to finiteness of representations.

Integer operations satisfy “ring” properties: commutativity,
associativity, distributivity.

Floating point operations satisfy “ordering” properties:
monotonicity, values of signs.

Observation:

Need to understand which abstractions apply in which
contexts.

Important issues for compiler writers and serious application
programmers.

CS429 Slideset 1: 10 Intro to Computer Systems

Great Reality 2

Computer scientists should understand
assembly language!

You won’t often program in assembly. Compilers are much better
at it and more patient than you are.

Understanding assembly is key to understanding what really

happens on the machine.

Behavior of programs in presence of bugs; high-level language
model breaks down.

Tuning program performance and understanding sources of
program inefficiency.

Implementing system software
Compiler has machine code as target
Operating systems must manage process state

Creating / fighting malware: x86 is the language of choice for
attackers.

CS429 Slideset 1: 11 Intro to Computer Systems

Great Reality 3

Memory Matters!
Memory is not unbounded!

It must be allocated and managed.

Many applications are memory dominated.

Memory referencing bugs are especially pernicious. The effects may
be distant in both time and space.

Memory performance is not uniform.

Cache and virtual memory effects can greatly affect program
performance.
Adapting your programs to characteristics of memory system
can lead to major speed improvements.

CS429 Slideset 1: 12 Intro to Computer Systems

Memory Referencing Bug Example

doub l e fun (i n t i)
{

i n t a [2] ;
doub l e d [1] = {3 . 1 4} ;
a [i] = 1073741824;
r e t u r n d [0] ;

}

Assume x86 (double is 8 bytes; int is 4 bytes). This will be different
on other systems, and may cause segmentation fault on some.

Call Result

fun(0) → 3.14
fun(1) → 3.14
fun(2) → 3.1399998664856
fun(3) → 2.00000061035156
fun(4) → 3.14, then segmentation fault

What can you infer about how the memory is laid out?
CS429 Slideset 1: 13 Intro to Computer Systems

Memory Referencing Bug Explanation, Little Endian

doub l e fun (i n t i)
{

i n t a [2] ;
doub l e d [1] = {3 . 1 4} ;
a [i] = 1073741824;
r e t u r n d [0] ;

}

Modified Call Result

a[0] fun(0) → 3.14
a[1] fun(1) → 3.14
d3 . . . d0 fun(2) → 3.1399998664856
d7 . . . d4 fun(3) → 2.00000061035156
saved state fun(4) → 3.14, then seg fault

CS429 Slideset 1: 14 Intro to Computer Systems

Memory Referencing Errors

C and C++ do not provide much memory protection.

Out of bounds array references

Invalid pointer values

Abuses of malloc/free

This can lead to nasty bugs.

Whether or not bug has any effect depends on system and
compiler.
Action at a distance

Corrupted object logically unrelated to one being accessed.
Effect of bug may be first observed long after it is generated.

How can I deal with this?

Program in Java, Lisp, or ML

Understand what possible interactions may occur

Use or develop tools to detect referencing errors

CS429 Slideset 1: 15 Intro to Computer Systems

Memory Performance Example

The following copies an n × n matrix:

/∗ i j ∗/
f o r (i =0; i<n ; i ++) {

f o r (j =0; j<n ; j++) {
b [i] [j] = a [i] [j] ;

}
}

This one computes precisely the same result.

/∗ j i ∗/
f o r (j =0; j<n ; j++) {

f o r (i =0; i<n ; i ++) {
b [i] [j] = a [i] [j] ;

}
}

But the performance may be much (could be 10X) slower,
particularly for large arrays. Can you guess why that may be?

CS429 Slideset 1: 16 Intro to Computer Systems

Great Reality 4

There’s more to performance than asymptotic
complexity.

Constant factors matter too!

Even an exact op count does not predict performance.

Easily see 10:1 performance range depending on how code is
written.

Must optimize at multiple levels: algorithm, data
representations, procedures, and loops.

Must understand the system to optimize performance.

How programs are compiled and executed.

How to measure program performance and identify
bottlenecks.

How to improve performance without destroying code
modularity and generality.

CS429 Slideset 1: 17 Intro to Computer Systems

Great Reality 5

Computers do more than execute programs.

They need to get data in and out. The
I/O system is critical to program
reliability and performance.

They communicate with each other over networks. Many
system-level issues arise in the presence of networking.

Concurrent operations by autonomous processes

Coping with unreliable media

Cross platform compatibility

Complex performance issues

CS429 Slideset 1: 18 Intro to Computer Systems

Great Reality 6 (I Added this One)

Computers do a lot with very simple
primitives.

Nobel Prize winner (in
Economics) Herbert Simon
used an ant to explain how
simple actions can explain
complex results. (Sciences

of the Artificial, 1969)

Imagine an ant walking along a beach. You notice that the ant is
tracing a very intricate path. Must be executing a pretty complex
algorithm, right?

CS429 Slideset 1: 19 Intro to Computer Systems

Simon’s Ant

Actually not! If you look closer, you notice that there are small
pebbles in the ant’s path. The ant responds to each by turning
either right or left, possibly randomly.

Lesson: You can generate very complex results using only very
simple tools.

CS429 Slideset 1: 20 Intro to Computer Systems

Church-Turing Thesis

A Turing Machine is a very simple computing device that can look
at a symbol on a tape, write another symbol, and move right or left
one square, under the direction of a simple program.

Everything that can be computed can be computed by a

Turing Machine.

The most powerful
computer you’ll ever use in
your life is no more

powerful than a Turing

Machine. We say that a
machine is Turing

complete if it can
emulate a Turing machine.

CS429 Slideset 1: 21 Intro to Computer Systems

Course Perspective

Most systems courses are “builder-centric.”

Computer Architecture:
Design pipelined processor
in Verilog.

Operating Systems:
Implement large portions of
operating system.

Compilers: Write compiler
for simple language.

Networking: Implement and
simulate network protocols.

CS429 Slideset 1: 22 Intro to Computer Systems

Course Perspective

This course is programmer-centric.

The purpose is to show how by knowing
more about the design of the underlying
system, one can be more effective as a
programmer.

Enable you to

Write programs that are more reliable
and efficient
Incorporate features that require hooks
into OS: concurrency, signal handlers,
etc.

Not just a course for dedicated hackers. We bring out the
hidden hacker in everyone.

Cover material in this course that you won’t see elsewhere.

CS429 Slideset 1: 23 Intro to Computer Systems

Our Subject: Computer Organization

CS429 Slideset 1: 24 Intro to Computer Systems

