
CS429: Computer Organization and Architecture
Instruction Set Architecture VI

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: September 23, 2019 at 12:37

CS429 Slideset 11: 1 Instruction Set Architecture VI

Alignment

CS429 Slideset 11: 2 Instruction Set Architecture VI

Structures and Alignment

Unaligned Data

p p+1 p+5 p+9 p+17

c i[0] i[1] v

struct S1 {

char c;

int i[2];

double v;

} *p;

Aligned Data

Primitive data type requires K bytes

Starting/ending address must be a multiple of K

p+0 p+4 p+8 p+16 p+24

c i[0] i[1] v

✻

Multiple of 8

✻

Multiple of 4

✻

Multiple of 8

✻

Multiple of 8

3 bytes 4 bytes
extra extra

CS429 Slideset 11: 3 Instruction Set Architecture VI

Alignment Principles

Aligned Data

Primitive data type requires K bytes

Address must be a multiple of K

Required on some machines; advised on x86-64

Motivation for Aligning Data

Memory accessed by (aligned) chunks of 4, 8 or more bytes
(system dependent)

It’s inefficient to load or store datum that spans quad word
boundaries

Virtual memory is trickier when datum spans 2 pages

Compiler

Inserts gaps in structure to ensure correct alignment of fields

CS429 Slideset 11: 4 Instruction Set Architecture VI

Specific Cases of Alignment (x86-64)

1 byte: char, ...

no restrictions on address

2 bytes: short, ...

lowest 1 bit of address must be 02

4 bytes: int, float, ...

lowest 2 bits of address must be 002

8 bytes: double, long, char *, ...

lowest 3 bits of address must be 0002

16 bytes: long double (GCC on Linux)

lowest 4 bits of address must be 00002

CS429 Slideset 11: 5 Instruction Set Architecture VI

Satisfying Alignment with Structures

Within structure:

Must satisfy each element’s alignment
requirement

Overall structure placement

struct S1 {

char c;

int i[2];

double v;

} *p;

Each structure has alignment requirement K, where K is the
largest alignment of any element

Initial address and structure length must be multiples of K

Example: K = 8, due to double element

p+0 p+4 p+8 p+16 p+24

c i[0] i[1] v

✻

Multiple of 8

✻

Multiple of 4

✻

Multiple of 8

✻

Multiple of 8

3 bytes 4 bytes
extra extra

CS429 Slideset 11: 6 Instruction Set Architecture VI

Meeting Overall Alignment Requirement

For largest alignment requirement K

Overall structure must be multiple of K

struct S2 {

double v;

int i[2];

char c;

}

p+0 p+8 p+16 p+24

v i[0] i[1] c extra 7 bytes

✻

Multiple of 8

CS429 Slideset 11: 7 Instruction Set Architecture VI

Arrays of Structures

Overall structure length multiple of K

Satisfy alignment requirement for every
element

struct S2 {

double v;

int i[2];

char c;

} a [10];

a+0 a+24 a+48 a+72

a[0] a[1] a[2] ...

p+24 p+32 p+40 p+48

v i[0] i[1] c extra 7 bytes

CS429 Slideset 11: 8 Instruction Set Architecture VI

Accessing Array Elements

Compute array offset 12*idx

sizeof(S3), including alignment spacers

Element j is at offset 8 within structure

Assembler gives offset a+8

Resolved during linking

struct S3 {

short i;

float v;

short j;

} a [10];

CS429 Slideset 11: 9 Instruction Set Architecture VI

Accessing Array Elements

a+0 a+12 a+12*idx

a[0] ... a[idx] ...

a+12*idx a+12*idx+8

i 2 bytes v j 2 bytes

short get_j (int idx

)

{

return a[idx].j;

}

%rdi holds idx

leaq (%rdi ,%rdi ,2) ,%rax # 3*

idx

movzwl a+8(,%rax ,4) , %eax

CS429 Slideset 11: 10 Instruction Set Architecture VI

Saving Space

Put large data types first! Is this guaranteed to be the optimal
use of space?

Instead of:

struct S4 {

char c;

int i;

char d;

} *p;

do this:

struct S5 {

int i;

char c;

char d;

} *p;

Effect (K = 4)

c 3 bytes i d 3 bytes

i c d 2 bytes

CS429 Slideset 11: 11 Instruction Set Architecture VI

Aside: The Knapsack Problem

The Knapsack Problem is a famous NP-hard computational
problem. Given a bin of fixed size and a number of items, each
characterised by a volume and a value, maximise the value of items
that can fit in the bin.

For example: suppose you have items of sizes {1, 4, 5, 7} and a
container of size 10.

Using a greedy algorithm heuristic, you’d put the largest items in
first, resulting in putting in {7, 1}, for a total of 8 in the container,
9 left outside.

A better solution is to put in {4, 5, 1}, for a total of 10 in the
container and 7 outside.

The knapsack problem is an instance of a class of problems called
bin packing problems.

CS429 Slideset 11: 12 Instruction Set Architecture VI

Union Allocation

Principles

Overlay union elements.

Allocate according to the largest element.

Can only use one field at a time.

union U1 {

char c;

int i[2];

double v;

} *up

c

i[0] i[1]

v

up+4 up+8up+0

CS429 Slideset 11: 13 Instruction Set Architecture VI

Using Union to Access Bit Patterns

typedef union {

float f;

unsigned u;

} bit_float_t ;

0 4

u
f

float bit2float (unsigned u)

{

bit_float_t arg;

arg.u = u;

return arg.f;

}

unsigned float2bit (float f)

{

bit_float_t arg;

arg.f = f;

return arg.u;

}

Get direct representation to bit representation of float.
bit2float generates float with given bit pattern.
Note: this is not the same as (float) u.
float2bit generates bit pattern from float.
Note: this is not the same as (unsigned) f.

CS429 Slideset 11: 14 Instruction Set Architecture VI

Byte Order Revisited

Idea

Short/long/quad words stored in memory as 2/4/8
consecutive bytes.

Which is the most (least) significant?

Can cause problems when exchanging binary data between
machines.

Big Endian

Most significant byte has lowest address.

PowerPC, Sparc

Little Endian

Least significant byte has lowest address.

Intel x86, Alpha

CS429 Slideset 11: 15 Instruction Set Architecture VI

Byte Ordering Example

union {

unsigned char c[8];

unsigned short s[4];

unsigned int i[2];

unsigned long l;

} dw;

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[1]i[0]

l

i n t j ;
f o r (j = 0 ; j < 8 ; j++)

dw . c [j] = 0 x f 0 + j ;
p r i n t f (” Chars 0−7 == [0 x%x , 0 x%x , 0 x%x , 0 x%x , 0 x%x , 0 x%x , 0 x%x , 0 x%

x]\ n” ,
dw . c [0] , dw . c [1] , dw . c [2] , dw . c [3] ,
dw . c [4] , dw . c [5] , dw . c [6] , dw . c [7]) ;

p r i n t f (” S h o r t s 0−3 == [0 x%x , 0 x%x , 0 x%x , 0 x%x]\ n” ,
dw . s [0] , dw . s [1] , dw . s [2] , dw . s [3]) ;

p r i n t f (” I n t s 0−1 == [0 x%x , 0 x%x]\ n” ,
dw . i [0] , dw . i [1]) ;

p r i n t f (” Long == [0 x%l x]\ n” , dw . l) ;

CS429 Slideset 11: 16 Instruction Set Architecture VI

Byte Ordering on the x86

Little Endian

i[0] i[1]

s[0] s[1] s[2] s[3]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

f0 f1 f2 f3 f4 f5 f7f6

LSB MSB LSB MSB MSB LSB MSBLSB

MSB LSB MSB

LSB

LSB

Print

MSB

l

Output on Pentium:

Chars 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]

Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]

Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]

Long 0 == [0xf7f6f5f4f3f2f1f0]

CS429 Slideset 11: 17 Instruction Set Architecture VI

Byte Ordering on Sun

Big Endian

i[0] i[1]

s[0] s[1] s[2] s[3]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

f0 f1 f2 f3 f4 f5 f7f6

Print

MSB

LSBMSB MSB LSB

LSBMSB MSB LSB MSB LSB MSB LSB

LSB

l

Output on Sun:

Chars 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]

Shorts 0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7]

Ints 0-1 == [0xf0f1f2f3,0xf4f5f6f7]

Long 0 == [0xf0f1f2f3f4f5f6f7]

CS429 Slideset 11: 18 Instruction Set Architecture VI

Summary

Arrays in C

Contiguous allocation of memory, row order.

Pointer to first element.

No bounds checking.

Compiler Optimizations

Compiler often turns array code into pointer code.

Uses addressing modes to scale array indices.

Lots of tricks to improve array indexing in loops.

Structures

Allocate bytes in order declared.

Pad in middle and at end to satisfy alignment.

Unions

Overlay declarations.

Way to circumvent type system.

CS429 Slideset 11: 19 Instruction Set Architecture VI

