
CS429: Computer Organization and Architecture
Datapath I

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

Last updated: March 25, 2019 at 13:29

CS429 Slideset 12: 1 Datapath I



Where We’re Headed

Recall that the most fundamental abstraction for the machine
semantics for the x86/Y86 or similar machines is the
fetch-decode-execute cycle (the von Neumann architecture).

The machine repeats the
following steps forever:

1 fetch the next instruction
from memory (the PC tells
you which is next);

2 decode the instruction (in
the control unit);

3 execute the instruction;

4 update the state
appropriately;

5 go to step 1.

CS429 Slideset 12: 2 Datapath I



Can We Speed Up the Fetch-Execute Cycle?

Notice that fetching, decoding, executing, updating likely use
different hardware modules.

Imagine if we could do all of the following phases in parallel:

1 Update the state for instruction k ,

2 Execute instruction k + 1

3 Decode instruction k + 2

4 Fetch instruction k + 3

This is called pipelining. It would allow much better utilization of
the hardware and speed up the execution of our programs
substantially!

We don’t use exactly those phases, but something similar.

CS429 Slideset 12: 3 Datapath I



Looking Ahead: The Pipeline Ideal

CS429 Slideset 12: 4 Datapath I



Overview

How do we build a digital computer?

Hardware building blocks: digital logic primitives.

Instruction set architecture: what HW must implement.

Principled approach

Hardware designed to implement one instruction at a time,
and connect to the next instruction.

Decompose each instruction into a series of steps.

Expect that many steps will be common to many instructions.

Extend design from there

Overlap execution of multiple instructions (pipelining).

Parallel execution of many instructions.

CS429 Slideset 12: 5 Datapath I



Y86 Instruction Set

Byte 0 1 2 3 4 5 6 7 8 9

halt 0 0

nop 1 0

cmovXX rA,rB 2 fn rA rB

irmovq V,rB 3 0 F rB V

rmmovq rA,D(rB) 4 0 rA rB D

mrmovq D(rB),rA 5 0 rA rB D

OPq rA,rB 6 fn rA rB

jXX Dest 7 fn Dest

call Dest 8 0 Dest

ret 9 0

pushq rA A 0 rA F

popq rA B 0 rA F

CS429 Slideset 12: 6 Datapath I



Building Blocks

Combinational Logic

Compute Boolean
functions of inputs

Continuously respond to
input changes

Operate on data and
implement control

Storage Elements

Store bits

Implement addressable
memories

Non-addressable registers

Loaded only as clock
rises.

ALU

fun

A

B

= 

MUX

0

1

A

valA

srcA

valB

srcB B

Register

File

Clock

valW

dstWW

Clock

CS429 Slideset 12: 7 Datapath I



SEQ Hardware Structure

State

Program counter register (PC)

Condition code register (CC)

Register file

Memories: access same memory
space

Data: for reading/writing
program data
Instruction: for reading
instructions

Instruction Flow

Read instruction at address
specified by PC

Process through stages

Update program counter

CS429 Slideset 12: 8 Datapath I



The Basic Idea

Break instruction execution into a series of common stages so that
(eventually) multiple instructions can be processed concurrently.

Pros:

Microcoding gives greater instruction granularity.

May be able to use hardware more efficiently.

Provides greater instruction throughput.

Challenges:

Requires very careful ISA design.

Assumes commonality among instruction types.

Data and control hazards may inhibit pipelining.

CS429 Slideset 12: 9 Datapath I



SEQ Stages

Fetch: Read instruction from
instruction memory.

Decode: Read program registers

Execute: Compute value or address

Memory: Read or write back data.

Write Back: Write program
registers.

PC: Update the program counter.

CS429 Slideset 12: 10 Datapath I



SEQ Stages

This is one possible decomposition of the instruction flow into
stages. Each stage can be considered a “subroutine” in the Fetch
/ Decode / Execute cycle.

Fetch: Read instruction from instruction memory.

Decode: Read program registers

Execute: Compute value or address

Memory: Read or write back data.

Write Back: Write program registers.

PC: Update the program counter.

Pipelining works best if every instruction can be decomposed into
these same stages. Which do you think is probably the slowest
stage?

CS429 Slideset 12: 11 Datapath I



Computed Values

Fetch

icode Instruction code
ifun Function code
rA Inst. register A
rB Inst. register B
valC Instruction constant
valP Incremented PC

Execute

valE ALU result
Bch Branch flag

Decode

srcA Register ID A
srcB Register ID B
dstE Dest. register E
dstM Dest. register M
valA Register value A
valB Register value B

Memory

valM Value from memory

CS429 Slideset 12: 12 Datapath I



Instruction Decoding

ic fn rA rB valC

General Instruction Format

Instruction byte: icode:ifun

(Optional) register byte: rA:rB

(Optional) constant word: valC

CS429 Slideset 12: 13 Datapath I



Executing Arith./Logical Operations

This is the general form of a Y86 arithmetic/logical operation.

OPq rA,rB 6 fn rA rB

What happens at each stage?

Fetch: Read instruction from instruction memory.

Decode: Read program registers

Execute: Compute value or address

Memory: Read or write back data.

Write Back: Write program registers.

PC: Update the program counter.

CS429 Slideset 12: 14 Datapath I



Executing Arith./Logical Operations

OPq rA,rB 6 fn rA rB

Fetch: Read 2 bytes.∗

Decode: Read operands (rA,
rB).

Execute:

Perform the operation with
ALU.

Set condition codes.

Memory: Do nothing.

Write back: Update dest.
register (rB).

PC Update: Increment PC by 2.
Why?

∗The system probably reads 10+ bytes, not knowing in advance that
this is a 2 byte instruction.

CS429 Slideset 12: 15 Datapath I



Stage Computation: Arith./Logical Ops

OPq rA,rB Comment

icode:ifun ← M1[PC] Read instruction byte
Fetch rA:rB ← M1[PC+1] Read register byte

valP ← PC+2 Compute next PC

Decode valA ← R[rA] Read operand A
valB ← R[rB] Read operand B

Execute valE ← valB OP valA Perform ALU operation
Set CC Set condition code register

Memory

Write back R[rB] ← valE Write back result

PC Update PC ← valP Update PC

Formulate instruction execution as a sequence of simple steps.

Use the same general form for all instructions.

Why do this? Microcode?

CS429 Slideset 12: 16 Datapath I



Executing rmmovq

rmmovq rA,D(rB)

4 0 rA rB D

Fetch: Read 10 bytes.

Decode: Read operand regs.

Execute: Compute effective
address.

Memory: Write to memory.

Write back: Do nothing.

PC Update: Increment PC by
10.

CS429 Slideset 12: 17 Datapath I



Stage Computation: rmmovq

rmmovq rA, D(rB) Comment

icode:ifun ← M1[PC] Read instruction byte
Fetch rA:rB ← M1[PC+1] Read register byte

valC ← M8[PC+2] Read displacement D
valP ← PC+10 Compute next PC

Decode valA ← R[rA] Read operand A
valB ← R[rB] Read operand B

Execute valE ← valB + valC Compute effective address

Memory M8[valE] ← valA Write value to memory

Write back

PC Update PC ← valP Update PC

Use the ALU for address computation.

CS429 Slideset 12: 18 Datapath I



Executing popq

popq rA B 0 rA F

Fetch: Read 2 bytes.

Decode: Read stack pointer.

Execute: Increment stack
pointer by 8.

Memory: Read from old stack
pointer.

Write back:

Update stack pointer.

Write result to register.

PC Update: Increment PC by 2.

CS429 Slideset 12: 19 Datapath I



Stage Computation: popq

popq rA Comment

icode:ifun ← M1[PC] Read instruction byte
Fetch rA:rB ← M1[PC+1] Read register byte

valP ← PC+2 Compute next PC

Decode valA ← R[%rsp] Read stack pointer
valB ← R[%rsp] Read stack pointer

Execute valE ← valB + 8 Increment stack pointer

Memory valM ← M8[valA] Read from stack.

Write back R[%rsp] ← valE Update stack pointer
R[rA] ← valM Write back result

PC Update PC ← valP Update PC

Use the ALU to increment stack pointer.

Must update two registers: popped value, new stack pointer.

CS429 Slideset 12: 20 Datapath I



Executing Jumps

jXX Dest

7 fn Dest

Fetch:

Read 9 bytes.

Increment PC by 9.

Decode: Do nothing.

Execute:

Determine whether to take
branch based on jump
condition and condition
codes.

Memory: Do nothing.

Write back: Do nothing.

PC Update:

Set PC to Dest if branch is
taken.

Otherwise, increment PC by
9.

CS429 Slideset 12: 21 Datapath I



Stage Computation: Jumps

jXX Dest Comment

icode:ifun ← M1[PC] Read instruction byte
Fetch valC ← M8[PC+1] Read destination address

valP ← PC+9 Fall through address

Decode

Execute Bch ← Cond(CC, ifun) Take branch?

Memory

Write back

PC Update PC ← Bch ? valC : valP Update PC

Compute both addresses.

Choose based on setting of condition codes and branch
condition.

CS429 Slideset 12: 22 Datapath I



Executing call

call Dest 8 0 Dest

Fetch:

Read 9 bytes

Increment PC by 9

Decode: Read stack pointer.

Execute: Decrement stack
pointer by 8.

Memory:

Write incremented PC
(return address) to new
value of stack pointer.

Write back: Update stack
pointer.

PC Update: Set PC to Dest

CS429 Slideset 12: 23 Datapath I



Stage Computation: call

call Dest Comment

icode:ifun ← M1[PC] Read instruction byte
Fetch valC ← M8[PC+1] Read destination address

valP ← PC+9 Compute return addr.

Decode valB ← R[%rsp] Read stack pointer

Execute valE ← valB + -8 Decrement stack pointer

Memory M8[valE] ← valP Write return value on stack.

Write back R[%rsp] ← valE Update stack pointer

PC Update PC ← valC Set PC to destination.

Use the ALU to decrement stack pointer.

Store incremented PC.

CS429 Slideset 12: 24 Datapath I



Executing ret

ret 9 0

Fetch: Read 1 byte

Decode: Read stack pointer.

Execute: Increment stack
pointer by 8.

Memory:

Read return address from
old stack pointer.

Write back: Update stack
pointer.

PC Update: Set PC to return
address.

CS429 Slideset 12: 25 Datapath I



Stage Computation: ret

ret Comment

Fetch icode:ifun ← M1[PC] Read instruction byte

Decode valA ← R[%rsp] Read operand stack
valB ← R[%rsp] Read operand stack

Execute valE ← valB + 8 Increment stack pointer

Memory valM ← M8[valA] Read return address

Write back R[%rsp] ← valE Update stack pointer

PC Update PC ← valM Set PC to return address

Use the ALU to increment stack pointer.

Read return address from memory.

CS429 Slideset 12: 26 Datapath I



Computation Steps: ALU Operations

OPq rA,rB Comment

icode,ifun icode:ifun ← M1[PC] Read instruction byte

Fetch rA,rB ra:rB ← M1[PC+1] Read register byte

valC Read constant word

valP valP ← PC+2 Compute next PC

Decode valA,srcA valA ← R[rA] Read operand A

valB,srcA valB ← R[rB] Read operand B

Execute valE valE ← valB OP valA Perform ALU operation

Cond code Set CC Set condition code reg.

Memory valM Memory read/write

Write dstE R[rB] ← valE Write back ALU result

back dstM Write back memory

PC update PC PC ← valP Update PC

All instructions follow the same general pattern.

They differ only in what gets computed each step.

CS429 Slideset 12: 27 Datapath I



Computation Steps: Call

call Dest Comment

icode,ifun icode:ifun ← M1[PC] Read instruction byte

Fetch rA,rB Read register byte

valC valC ← M8[PC+1] Read constant word

valP valP ← PC+9 Compute next PC

Decode valA,srcA Read operand A

valB,srcA valB ← R[%rsp] Read operand B

Execute valE valE ← valB - 8 Perform ALU operation

Cond code Set condition code reg.

Memory valM M8[valE] ← valP Memory read/write

Write dstE R[%rsp] ← valE Write back ALU result

back dstM Write back memory

PC update PC PC ← valC Update PC

All instructions follow the same general pattern.

They differ only in what gets computed each step.

CS429 Slideset 12: 28 Datapath I



Computed Values

Fetch

icode Instruction code
ifun Function code
rA Inst. register A
rB Inst. register B
valC Instruction constant
valP Incremented PC

Execute

valE ALU result
Bch Branch flag

Decode

srcA Register ID A
srcB Register ID B
dstE Dest. register E
dstM Dest. register M
valA Register value A
valB Register value B

Memory

valM Value from memory

CS429 Slideset 12: 29 Datapath I



Summary

Sequential instruction execution cycle.

Instruction mapping to hardware.

Instruction decoding.

CS429 Slideset 12: 30 Datapath I


