
CS429: Computer Organization and Architecture

Pipeline I

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: July 11, 2019 at 09:17

CS429 Slideset 14: 1 Pipeline I

Overview

What’s wrong with the sequential (SEQ) Y86?

It’s slow!

Each piece of hardware is used only a small fraction of the
time.

We would like to find a way to get more performance with
only a little more hardware.

General Principles of Pipelining

Express task as a collection of stages

Move instructions through stages

Process several instructions at any given moment

CS429 Slideset 14: 2 Pipeline I

Overview

Creating a Pipelined Y86 Processor

Rearrange SEQ

Insert pipeline registers

Deal with data and control hazards

Pipelining is an optimization to the implementation. Like any
other optimization, it should not change the semantics.

Pipeline Correctness Axiom: A pipeline is correct only if the
resulting machine satisfies the ISA (nonpipelined) semantics.

CS429 Slideset 14: 3 Pipeline I

Pipelining: Laundry Example

Suppose you have four folks, each with a load of clothes to wash,
dry, fold and stash away. There are four subtasks: wash, dry, fold,
stash. Suppose each takes 30 minutes.

Time to do a load of laundry from start to finish: 2 hours. (That’s
the latency.)

CS429 Slideset 14: 4 Pipeline I

Sequential Laundry

Sequential laundry takes 8 hours for 4 loads.

What would it mean to pipeline this process?

If they learned pipelining, how long would 4 loads take?

CS429 Slideset 14: 5 Pipeline I

Pipelined Laundry

Pipelined laundry takes 3.5 hours for 4 loads! But each load still
takes 2 hours.

What’s the metric that improved? How would you measure the
efficiency of the process if you were running a laundry service with
loads (inputs) always ready to process?

CS429 Slideset 14: 6 Pipeline I

Latency vs. Throughput

Latency is the time from start to finish for a given task.

Throughput is the number of tasks completed in a given time
period.

Example: suppose that each laundry stage (wash, dry, fold, stash)
takes 30 minutes. But you have a laundromat with 4 washers, 4
driers, 4 folding stations, 4 stashing stations.

What is the latency?

CS429 Slideset 14: 7 Pipeline I

Latency vs. Throughput

Latency is the time from start to finish for a given task.

Throughput is the number of tasks completed in a given time
period.

Example: suppose that each laundry stage (wash, dry, fold, stash)
takes 30 minutes. But you have a laundromat with 4 washers, 4
driers, 4 folding stations, 4 stashing stations.

What is the latency?
Latency is 2 hours, because it still takes 2 hours to get any
single load through the entire process.

What is the highest possible throughput (per hour)?

CS429 Slideset 14: 8 Pipeline I

Latency vs. Throughput

Latency is the time from start to finish for a given task.

Throughput is the number of tasks completed in a given time
period.

Example: suppose that each laundry stage (wash, dry, fold, stash)
takes 30 minutes. But you have a laundromat with 4 washers, 4
driers, 4 folding stations, 4 stashing stations.

What is the latency?
Latency is 2 hours, because it still takes 2 hours to get any
single load through the entire process.

What is the highest possible throughput (per hour)?
Throughput is (theoretically) 8 loads / hour since you can
complete 8 loads every hour in steady state. How?

CS429 Slideset 14: 9 Pipeline I

Pipelining Lessons

Pipelining doesn’t help latency of a
single task; it helps throughput of
the entire workload.

Multiple tasks operate
simultaneously using different
resources.

Potential speedup = number of
stages.

Unbalanced lengths of pipe stages
may reduce speedup.

Time to “fill” pipeline and time to
“drain” it reduces speedup.

May need to “stall” for
dependencies.

CS429 Slideset 14: 10 Pipeline I

Computational Example

Combinational

Logic Reg

20 ps300 ps

Clock

Throughput = 3.12 GIPS

Latency = 320 ps

System

Computation requires a total of 300 picoseconds.

Needs an additional 20 picoseconds to save the result in the
register.

Must have a clock cycle of at least 320 ps. Why?

CS429 Slideset 14: 11 Pipeline I

3-Way Pipelined Version

Reg

20 ps

Reg

20 ps

Comb.
Logic

Comb.
Logic

Comb.
Logic

100 ps 100 ps 100 ps

Reg

20 ps

Clock

A B C
Throughput = 8.33 GIPS

Latency = 360 ps

System

Divide combinational logic into 3 blocks of 100 ps each.

Can begin a new operation as soon as the previous one passes
through stage A.

Begin new operation every 120 ps. Why?

Overall latency increases! It’s now 360 ps from start to finish.

CS429 Slideset 14: 12 Pipeline I

Pipeline Diagrams

Unpipelined

OP1

OP2

OP3

Time

Cannot start new operation until the previous one completes.

3-Way Pipelined

A B C

A C

A B C

B

OP1

OP2

OP3

Time

Up to 3 operations in process simultaneously.
CS429 Slideset 14: 13 Pipeline I

Operating a Pipeline

A B C

A B C

A B C

OP1

OP2

OP3

Clock

240 360 480 6001200

At time 300.

Comb.
Logic

Comb.
Logic

Comb.
Logic

100 ps 100 ps 100 ps

Reg

20 ps

Clock

A B C
Reg

20 ps

Reg

20 ps

CS429 Slideset 14: 14 Pipeline I

Limitations: Non-uniform Delays

Reg Reg Reg
Comb
Logic
A

Comb
Logic
B

Comb
Logic
C

50 ps 20 ps 20 ps 20 ps150 ps 100 ps

Clock

A B C

A B C

A B COP3

OP2

OP1

Time

Throughput = 5.88 GIPS

Latency = 510 ps

Throughput is limited by the slowest stage.

Other stages may sit idle for much of the time.

It’s challenging to partition the system into balanced stages.

CS429 Slideset 14: 15 Pipeline I

Limitations: Register Overhead

20 ps

Reg

50 ps

Comb
Logic

20 ps

Reg

50 ps

Comb
Logic

20 ps

Reg

50 ps

Comb
Logic

20 ps

Reg

50 ps

Comb
Logic

20 ps

Reg

50 ps

Comb
Logic

20 ps

Reg

50 ps

Comb
Logic

Clock
Latency = 420 ps, Throughput = 14.29 GIPS

As you try to deepen the pipeline, the overhead of loading registers
becomes more significant.

Percentage of clock cycle spent loading registers:

1-stage pipeline: 6.25%
3-stage pipeline: 16.67%
6-stage pipeline: 28.57%

High speeds of modern processor designs are obtained through very
deep pipelining. (Some models of x86 have a pipeline of 20-24
stages.)

CS429 Slideset 14: 16 Pipeline I

The Performance Equation

CPU Time =
Seconds

Program
=

Instructions

Program
∗

Cycles

Instruction
∗

Seconds

Cycle

Clock Cycle Time

Improves by a factor of almost N for N-deep pipeline.

Not quite a factor of N due to pipeline overheads.

Cycles Per Instructions (CPI)

In an ideal world, CPI would stay the same.

An individual instruction takes N cycles.

But we have N instructions in flight at a time.

So, average CPIpipe = (CPIno−pipe ∗ N)/N

Thus, performance can improve by up to a factor of N.

CS429 Slideset 14: 17 Pipeline I

Data Dependencies

Combinational

Logic
Reg

Clock

OP1

OP2

OP3

Time

Sequential System: Each operation may depend on the previous
one. (It doesn’t matter for a sequential system. Why not?)

CS429 Slideset 14: 18 Pipeline I

Data Hazards

A CB

A CB

A CB

A CB

OP1

OP2

OP3

OP4

Time

Comb.
Logic

Comb.
Logic

Comb.
Logic

Reg

Clock

A B C
Reg Reg

Pipelined System:

Result does not feed back around in time for the next
operation.

Pipelining has changed the behavior of the system. Alarm!!

CS429 Slideset 14: 19 Pipeline I

Data Hazards in Processors

irmovq $50, %rax

addq %rax, %rbx

mrmovq 100(%rbx), %rdx

Result from one instruction is
used as an operand for another;
called read-after-write (RAW)
dependency.

This is very common in actual
programs.

Must make sure that our pipeline handles these properly and
gets the right result.

Should minimize performance impact as much as possible.

CS429 Slideset 14: 20 Pipeline I

Control Hazards

A control hazard occurs if something interferes with the flow of
control through the program. I.e., the PC is not determined
quickly enough to allow fetching the next instruction.

xorq %rbx, %rbx

je Done

irmovq $100, %rax

ret

Done: irmovq $200, %rax

ret

When the je instruction moves from the fetch to decode stage,
what is the next instruction to fetch? When will you know?

CS429 Slideset 14: 21 Pipeline I

Pipeline Correctness

Pipeline Correctness Axiom: A pipeline is correct only if the
resulting machine satisfies the ISA (nonpipelined) semantics.

That is, the pipeline implementation must deal correctly with
potential data and control hazards. Any program that runs

correctly on the sequential machine must run on the pipelined

version with the exact same results.

CS429 Slideset 14: 22 Pipeline I

SEQ Hardware

Stages occur in sequence.

One operation in process at
at time.

One stage for each logical
pipeline operation.

Fetch: get next
instruction from memory.
Decode: figure out what
to do, and get values
from regfile.
Execute: compute.
Memory: access data
memory if needed.
Write back: write results
to regfile, if needed.

CS429 Slideset 14: 23 Pipeline I

SEQ+ Hardware

Still sequential implementation,
but reorder PC stage to put at
the beginning

PC Stage

Task is to select PC for
current instruction.

Based on results computed
by previous instruction.

Processor State

PC is no longer stored in a
register.

But, can determine PC
based on other stored
information.

CS429 Slideset 14: 24 Pipeline I

