
CS429: Computer Organization and Architecture

Pipeline II

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: July 11, 2019 at 14:45

CS429 Slideset 15: 1 Pipeline II



Pipeline Registers

Recall that one requirement of pipelining is inserting sequential
logic between pipeline stages to hold the intermediate values.

Reg Reg

Comb.
Logic

Comb.
Logic

Comb.
Logic

100 ps 100 ps

Reg

Clock

A B C

In general, these are called pipeline registers.

CS429 Slideset 15: 2 Pipeline II



PIPE- Hardware

Idea: Insert “pipeline
registers” to hold
intermediate values after
each pipeline stage.

Forward (Upward) Paths

Values passed from
one stage to the next.

Cannot jump past
stages.

E.g., valC must pass
through decode

CS429 Slideset 15: 3 Pipeline II



Pipeline Registers

The term “register” is overloaded. Don’t confuse the two uses.

1 It means the 16 named registers in the register file.

2 It also means data storage items within the implementation.

Pipeline “registers” are not user-visible processor registers.

CS429 Slideset 15: 4 Pipeline II



Feedback Paths

Predicted PC: guess
value of next PC

Branch information:

Jump taken/not
taken
Fall-through or
target address

Return address: read
from memory (stack)

Register updates: To
register file write
ports

CS429 Slideset 15: 5 Pipeline II



The Pipeline Ideal

Suppose all registers are initialized to zero.

CS429 Slideset 15: 6 Pipeline II



Data Dependencies: 3 Nop’s

CS429 Slideset 15: 7 Pipeline II



Data Dependencies: 2 Nop’s

CS429 Slideset 15: 8 Pipeline II



Data Dependencies: 1 Nop

CS429 Slideset 15: 9 Pipeline II



Data Dependencies: No Nop’s

CS429 Slideset 15: 10 Pipeline II



Control Hazards: Predicting the PC

Start fetch of a new
instruction after the
current one has
completed the fetch
stage.

There’s not enough time
to reliably determine the
next instruction.

Guess which instruction
will follow.

Then, recover if the
prediction was incorrect.

CS429 Slideset 15: 11 Pipeline II



Our Prediction Strategy

Instructions that don’t transfer control:

Predict next PC to be valP.
This is always reliable.

Call and Unconditional Jumps:

Predict next PC to be valC (destination).
This is always reliable.

Conditional Jumps:

Predict next PC to be valC (destination).
Only correct if the branch is taken; right about 60% of the
time. Why do you suppose it’s better than 50%

Return Instruction:

Don’t try to predict.

CS429 Slideset 15: 12 Pipeline II



Recovering from PC Misprediction

Mispredicted Jump:

Will see branch flag once instruction reaches memory stage.

Can get fall-through PC from valP.

Must throw away instructions fetched between prediction and
resolution. How many instructions?

Return Instruction:

Will get return PC when ret reaches write-back stage.

Since we can’t predict, we don’t fetch anything; no clean-up is
needed, but 3 cycles are lost.

CS429 Slideset 15: 13 Pipeline II


