CS429: Computer Organization and Architecture

Pipeline IlI

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

Last updated: July 11, 2019 at 15:02

CS429 Slideset 16: 1 Pipeline 11l

Data Hazard vs. Control Hazard

There are two types of hazards that interfere with flow through a
pipeline.

Data hazard: values produced from
one instruction are not available when
needed by a subsequent instruction.

Control hazard: a branch in the
control flow makes ambiguous what is
the next instruction to fetch.

CS429 Slideset 16: 2 Pipeline 11l

How Do We Fix the Pipeline? Possibilities:

Q Pad the program with NOPs. That could mean two things:

@ Change the program itself. That violates our Pipeline
Correctness Axiom. Why?

o Make the implementation behave as if there were NOPs
inserted.

Q That's called stalling the pipeline

o Data hazards:

@ Wait for producing instruction to complete
@ Then proceed with consuming instruction

o Control hazards:

@ Wait until new PC has been determined, then fetch
@ Make a guess and patch later, if wrong

@ How is this better than inserting NOPs into the program?

CS429 Slideset 16: 3 Pipeline 111

How Do We Fix the Pipeline?

Q Forward data within the pipeline
o Grab the result from somewhere in the pipe

@ After it has been computed
@ But before it has been written back

o This gives an opportunity to avoid performance degradation
due to stalling for hazards.

Q Do some clever combination of these.

The implemented solution (4) is a combination of 2 and 3: forward
data when possible and stall the pipeline only when necessary.

CS429 Slideset 16: 4 Pipeline 11l

Data Forwarding

irmovq $10, Jrdx
irmovq $3, Yrax
addq hrdx, hrax

@ Naive pipeline
o Register isn't written until completion of write-back stage.
@ Source operands read from register file in decode stage.
@ Needs to be in register file at start of stage.

@ Observation: value was available in execute or memory stage.

@ Trick:
@ Pass value directly from
generating instruction to
decode stage. Mﬁﬁzﬁ
| FORWARD
@ Needs to be available at end of _
decode stage. b "&

CS429 Slideset 16: 5 Pipeline IlI

Data Forwarding Example

prog2
O0x000: irmowvg $10,%rd=x F D E M | W
Ox00a: irmovg §3,%rax F D E M | W
O0x014: nop F D E M | W
O0x01l5: nop F D E M | W
Ox0le: addg %rdx,%rax F D E M | W
Ox018: halt FID|E|M]|W
Cycle
W
W_dstE = $rax R[$rax] « 3
W_valE=3
D
b -

SrcA= %rdx |valA « R[%rdx]=10
SrcB=%rax |valB« W vaE=3

CS429 Slideset 16: 6 Pipeline 11l

Bypass Paths

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Decode Stage:

@ Forwarding logic

Data

selects valA and valB e
@ Normally from
register file
Exccute
@ Forwarding: get valA c o e o
or valB from later —
pipeline stage
Forwarding Sources: o
@ Execute: valE e
Q Memory: vaIE, valM icode, fun,
@ Write back: valE, o
valM "o

CS429 Slideset 16: 7 Pipeline 11l

Data Forwarding Example 2

progd
0x000: irmewvg $10,%rdx F D E M | W
O0x00&a: irmeowvg §3,%rax F D E M | W
0x014: addg %rdx,%rax F D E M| W
0x016: halt FIDI|E|M]|W
Cycle 4
M
M_dstE = %rdx
M_vak =10
E
E_dstE = $rax
e vaE«<Q0+3=3

D

Srch = %rdx | vald < M_valE = 10
SrcB=%rax |yvaB« e valE=3

Yy

@ Register J%rdx: generated by ALU during previous cycle;
forwarded from memory as valA.

@ Register Jrax: value just generated by ALU; forward from
execute as valB.

CS429 Slideset 16: 3 Pipeline 11l

Implementing Forwarding

@ Add new feedback paths from E, M, and W pipeline registers
into decode stage.

@ Create logic blocks to select from multiple sources for valA
and valB in decode stage.

CS429 Slideset 16: 9 Pipeline 11l

W _walE
-

W _walM

idltlut m_walh

Data

memary

datain

M_valf

Execute

e_valE

e_dstE

Decode

n stat |icode

E stat |icoce | ifun valC valA valB dstE | cstM | srcA | srcB
i “
Instruction PC
memory increment
=]
_walA
W_vall

CS429 Slideset 1

Pipeline 11l

Limitation of Forwarding

progh 1 2 3 4 5 5] 7 B g 10 1
0x000: irmowvg §$128, $rdx FIDI|E|M|W
Ox00a: irmowveg §3,%rcx F D E M| W
Ox014: rmmowveg %rex, O0(%cdx) F D E \Y W
Ox0le: irmowvyg 510, %rb=x F D E M| W
0x028: mrmowvyg O(%rdx),%rax # Load %rax F D E \Y W
0x032: addg %rbx,%rax # Use %rax F D E M| W
Ox034: halt FIDI|E|M]|W
Cycle 7 Cycle 8
V] W
M_dstE = $rb= M_dstM = 8r ax
M_vakE =10 = | m_vaM <« M[128] =3
D F
- Ermor

valA « M _valE = ‘Il:]f,f”
valB « R[$rax] =0

Load-use (data) dependency:
@ Value needed by end of decode stage in cycle 7.
@ Value read from memory in memory stage of cycle 8.

CS429 Slideset 16: 11 Pipeline 11l

Dealing with Load/Use Hazard

progh 1 3 4 5 5] 7 8 =] 10 11 12
Dx000: irmoveg $128, $rdx FIDIE | M|W
Ox00a: irmowvg §$3,%rcx F D E M [W
0x014: rmmovyg frcx, 0(%cdx) F D E il W
Ox0le: irmowg $10,%rb=x F D E M| W
0x028: mrmovwvg O(%rdx), %rax # Load %rax F D E il W
bubble rieE | M|W
0x032: addl %rbhx,%rax # Use %rax | F D B E il W
0x034: halt FIF|IDI|E | M|W
Cycle8
W
W_dstE = 8rbx
W_valE =10
W
M_dstM = $rax

m_valM < M[128] = 3 h

@ Notice that value needed is not in any pipeline register
@ Stall using instruction for one cycle; requires one bubble.
@ Can pick up loaded value by forwarding from memory stage.

CS429 Slideset 16: 12 Pipeline 11l

What's a Bubble

If we stall the pipeline at one stage and let the instructions ahead
proceed, that creates a gap that has to be filled.

A bubble is a “virtual nop” created by populating the pipeline
registers at that stage with values as if had there been a nop at that
point in the program. The bubble can flow through the pipeline just
like any other instruction.

A bubble is used for two
pUrpoSes:

Q fill the gap created when the
pipeline is stalled:;

Q replace a real instruction
that was fetched
erroneously.

CS429 Slideset 16: 13 Pipeline 11l

Control for Load/Use Hazard

progh 1 2 3 4 5 5] 7 a8 9 10 11 12
0x000: irmovg $128, $rdx F|ID|E|M|W
Ox00a: irmowveg §3,%rox F D E M| W
Ox014: rmmowveg %rex, O0(%cdx) F D E \Y W
Ox0le: irmowveg 510, %rb=x F D E M | W
0x028: mrmowveg O(%rdx) ,%rax # Load %rax F D E \Y W
bubble rE| MW
0x03Z: addl %$rbhx,%rax # Use %rax F D D E \Y W
0x034: halt FIF|DI|E[M]|W
Cycle 8
W
W_dstE = %rhx
W_valE =10
M
M_dstM = rax

m_vaM < M[128] = 3

@ Stall instructions in fetch and decode stages
@ Inject bubble into execute stage.

CS429 Slideset 16: 14 Pipeline 11l

Control for Load/Use Hazard

progh 1 2 3 4 5 5] 7 a8 9 10 11 12
0x000: irmovg $128, $rdx F|ID|E|M|W
Ox00a: irmowveg §3,%rox F D E M| W
Ox014: rmmowveg %rex, O0(%cdx) F D E \Y W
Ox0le: irmowveg 510, %rb=x F D E M | W
0x028: mrmowveg O(%rdx) ,%rax # Load %rax F D E \Y W
bubble rE| MW
0x03Z: addl %$rbhx,%rax # Use %rax F D D E \Y W
0x034: halt FIF|DI|E[M]|W
Cycle 8
W
W_dstE = %rhx
W_valE =10
M
M_dstM = rax
m_vaM « M[128] =3

Condition

| F [D |

E

M

W

Load/Use Hazard || stall

CS429 Slideset 16: 15

Pipeline 11l

stall ‘ bubble ‘ normal ‘ normal

Control Hazards: Recall Our Prediction Strategy

@ Instructions that don’t transfer control:

o Predict next PC to be valP; this is always reliable.
@ Call and Unconditional Jumps:

o Predict next PC to be valC (destination); this is always reliable.
@ Conditional Jumps:

o Predict next PC to be valC (destination).
o Only correct if the branch is taken; right about 60% of the
time.

@ Return Instruction:
@ Don't try to predict.

Note that we could have used a different prediction strategy

CS429 Slideset 16: 16 Pipeline Il1

Branch Misprediction Example

0x000: xorq Arax, hrax

0x002: jne target # Not taken
0x00b: irmovqg $1, Yrax # Fall through
0x015: halt

0x016: target:

0x016: irmovq $2, %rdx # Target
0x020: irmovq $3, %rcx # Target + 1
0x02a: halt

Should only execute the first 4 instructions.

CS429 Slideset 16: 17 Pipeline 11l

Handling Misprediction

progl
O0x000: zorg %rax,%rax F D E M| W
0x002: jne target #§ Not taken F D E M| W
Ox0lE&: irmovg 52,%cdx # Target F D
bubble LE|M|wW
0x020: irmowveg 33,%chx # Target+l F
bubble LD[E|M]|wW
0x00k: irmowveg 31,%rax # Fall through F D E M| W
Dx015: halt FIDIE|M|W

@ Predict branch as taken
o Fetch 2 instructions at target
@ Cancel when mispredicted

@ Detect branch not taken in execute stage

@ On following cycle, replace instruction in execute and decode
stage by bubbles.

o No side effects have occurred yet.

CS429 Slideset 16: 18 Pipeline 11l

Control for Misprediction

¥ prog7 1 2 3 4 5 & 7 8 9 10
Ox000: xorg %rax,¥rax F D E M| W
0x002: jne target # Not taken F D E M| W
Ox0Ll&: irmoweg 52, %rdx # Target F D
bubble LE|[M|wW
0x020: irmoweg 53, %rbx # Target+l F
bubble LD|E[M]|W
0x00k: irmowveg 51,%rax # Fall through F D E M| W
0x015: halt F|1DIE|M|W
Condition F | D | E | M | W

Mispredicted || normal ‘ bubble ‘ bubble ‘ normal ‘ normal

Branch

CS429 Slideset 16: 19 Pipeline 11l

Return Example

irmovq Stack, %rsp # Initialize stack pointer
call p # Procedure call
irmovqg $5, Yrsi # Return point
halt
.pos 0x20
p: irmovq $-1, %rdi # procedure
ret
irmovqg $1, Yrax # should not be executed
irmovq $2, %rcx # should not be executed
irmovq $3, %rdx # should not be executed
irmovqg $4, %rbx # should not be executed
.pos 0x100
Stack: # Stack pointer

Without stalling, could execute three additional instructions.

CS429 Slideset 16: 20 Pipeline Il1

Correct Return Example

ret

bubble
bubble
bubble

irmovq $5, Yrsi # Return

@ As ret passes through pipeline, stall at fetch stage—while in
decode, execute, and memory stages.

@ Inject bubble into decode stage.

@ Release stall when ret reaches write-back stage.

CS429 Slideset 16: 21 Pipeline 11l

Control for Return

This is a bit confusing, because there are actually three bubbles
inserted. Stall until the ret reaches write back.

ret

bubble

bubble

bubble

irmovq $5, Yrsi # Return

Conditon || F | D | E | M | W
Processing ret H stall ‘ bubble ‘ normal ‘ normal ‘ normal

CS429 Slideset 16: 22 Pipeline 11l

Pipeline Summary

Data Hazards
@ Most handled by forwarding with no performance penalty

@ Load / use hazard requires one cycle stall

Control Hazards

@ Cancel instructions when detect mispredicted branch; two
cycles wasted

@ Stall fetch stage while ret pass through pipeline; three cycles
wasted.

Control Combinations
@ Must analyze carefully
@ First version had a subtle bug

@ Only arises with unusual instruction combination

CS429 Slideset 16: 23 Pipeline Il1

Performance Analysis with Pipelining

_ Seconds Instructions Cycles Seconds
CPU time = — * %
Program Program Instruction Cycle

@ Ideal pipelined machine: Cycles per Instruction (CPIl) =1

@ One instruction completed per cycle.
@ But much faster cycle time than unpipelined machine.

@ However, hazards work against the ideal

o Hazards resolved using forwarding are fine with no penalty.
o Stalling degrades performance and instruction completion rate
is interrupted.

@ CPIl is a measure of the “architectural efficiency” of the
design.

CS429 Slideset 16: 24 Pipeline Il1

Computing CPI

CPl is a function of useful instructions and bubbles:

CitCh 104l

CPI =
C C

You can reformulate this to account for:
@ load/use penalties (Ip): 1 bubble
@ branch misprediction penalties (mp): 2 bubbles

@ return penalties (rp): 3 bubbles

Ip+ mp—+ rp

CPI=1.0
+ C

CS429 Slideset 16: 25 Pipeline 11l

Computing CPI (2)

@ So, how do we determine the penalties?

@ Depends on how often each situation occurs on average.

o How often does a load occur and how often does that load
cause a stall?

o How often does a branch occur and how often is it
mispredicted?

o How often does a return occur?

@ We can measure these using:

@ a simulator, or
@ hardware performance counters.

@ We can also estimate them through historical averages.

@ Then use estimates to make early design tradeoffs for the
architecture.

CS429 Slideset 16: 26 Pipeline IlI

Computing CPI

(3)

Assume some hypothetical counts:

Cause Name | Instruction | Condition | Stalls | Product
Frequency | Frequency

Load /use Ip 0.30 0.3 1 0.09

Mispredict mp 0.20 0.4 2 0.16

Return rp 0.02 1.0 3 0.06

Total penalty 0.31

This is not ideal.

CPI=1+0.31=1.31==31%

This gets worse when:

@ you also account for non-ideal memory access latency;

@ deeper pipeline (where stalls per hazard increase).

CS429 Slideset 16: 27 Pipeline Il1

