
CS429: Computer Organization and Architecture

Cache I

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: April 8, 2020 at 09:37

CS429 Slideset 18: 1 Cache I

Locality

Principle of Locality:

Programs tend to reuse data and instructions near those used
recently, or that were recently referenced.

Temporal locality: Recently referenced items are likely to be
referenced in the near future.

Spatial locality: Items with nearby addresses tend to be
referenced close together in time.

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

CS429 Slideset 18: 2 Cache I

Locality

Data:

Reference array elements in
succession (stride-1): Spatial

Reference sum each iteration:
Temporal

Instructions:

Reference instructions in sequence:
Spatial

Cycle through loop repeatedly:
Temporal

CS429 Slideset 18: 3 Cache I

Locality Example

Claim: Being able to look at code and get a qualitative sense of
its locality is a key skill for a professional programmer.

int sumarrayrows1 (int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

Does this function have good locality?

CS429 Slideset 18: 4 Cache I

Locality Example 2

int sumarrayrows2 (int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

Does this compute the same function as sumarrayrows1? Does this
function have good locality? How does it compare to the previous
version?

CS429 Slideset 18: 5 Cache I

Array Example

Assume the following:

1 Reading from memory always returns eight 8-byte values;

2 The cache holds 64 lines of 64 byes each;

3 The following array is declared as long a[64][8].

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 . . .

a2,0 . . .

.

a63,0 . . .

CS429 Slideset 18: 6 Cache I

Locality Example 3

A stride-1 reference pattern means that successive references are 1
“unit” apart. Here unit means the size of the data type, not
necessarily one byte.

Can you permute the loops so that this function scans the 3-d
array a with a stride-1 reference pattern (and thus has good spatial
locality)?

int sumarray3d (int a[N][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < N; k++)

sum += a[k][i][j];

return sum;

}

CS429 Slideset 18: 7 Cache I

Remember the CPU-Memory Gap

CPU speed increases faster than memory speed, meaning that:

memory is more and more a limiting factor on performance;
increased importance for caching and similar techniques.

CS429 Slideset 18: 8 Cache I

Memory Hierarchies

Some fundamental and enduring properties of hardware and
software:

Fast storage technologies typically cost more per byte and
have less capacity than slower ones.

The gap between CPU and main memory speed is widening.

Well-written programs tend to exhibit good locality.

Memory systems access “blocks” of data, not individual bytes.

These fundamental properties complement each other beautifully.

They suggest an approach for organizing memory and storage
systems known as a memory hierarchy.

CS429 Slideset 18: 9 Cache I

Example Memory Hierarchy

CS429 Slideset 18: 10 Cache I

Caches

Cache: A smaller, faster storage device that acts as a staging area
for a subset of the data in a larger, slower device.

The fundamental idea of a
memory hierarchy: For each k,
the faster, smaller device at
level k serves as a cache for the
larger, slower device at level
k+1.

CS429 Slideset 18: 11 Cache I

Examples of Caching in the Hierarchy

Cache type What Where Latency Managed by
(cycles)

Registers 8-byte word CPU registers 0 compiler
TLB address On-chip TLB 0 hardware

translations
L1 cache 32-byte block On-chip L1 1 hardware
L2 cache 32-byte block On-chip L2 10 hardware
Virtual 4KB page main memory 100 hw + OS
Memory
Buffer cache parts of files main memory 100 OS
Network buffer parts of files local disk 10M AFS/NFS client
cache
Browser cache web pages local disk 10M web browser
Web cache web pages remote server 1000M web proxy

disks server

CS429 Slideset 18: 12 Cache I

Why Memory Hierarchies?

Why do memory hierarchies work?

Programs tend to access the data at level k more often than
they access the data at level k+1.

Thus, the storage at level k+1 can be slower, and thus larger
and cheaper per bit.

Net effect: A large pool of memory that costs as much as the
cheap storage near the bottom, but that serves data to
programs at the rate of the fast storage near the top.

We use a combination of small fast memory and big slow
memory to give the illusion of big fast memory.

CS429 Slideset 18: 13 Cache I

Caching in a Memory Hierarchy

0 1 2 3

4 5 7

8 9 11

13 14 1512

6

10

4 9 10 3

10

Level k:

Level k+1:

Smaller, faster, more
expensive device at level k
caches a subset of the
blocks from level k+1.

Data is copied between
levels in block-sized
transfer units.

Larger, slower, cheaper
storage device at level k+1
is partitioned into blocks.

CS429 Slideset 18: 14 Cache I

General Caching Concepts

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

12

12

Level k:

Level k+1:

0 1 2 3

5 7

8 9 11

13 14 1512

6

10

Request 12

Request 12

4*

9 314

0 1 2 3

8

Program needs object d, stored in some
block b.

Cache hit: program finds b in the level
k cache, e.g., block 14.

Cache miss: b is not at level k, so must
fetch it from level k+1, e.g., block 12.

If level k cache is full, then some
current block (the victim) must be
replaced (evicted).

Placement policy: where can the
new block go? E.g., b mod 4.

Replacement policy: Which block
should be evicted? E.g., LRU.

CS429 Slideset 18: 15 Cache I

General Caching Concepts

Types of cache misses:

Cold (compulsary) miss: the cache is empty.

Conflict miss: all available positions at level k are occupied.

Most caches limit blocks at level k+1 to a small subset
(sometimes only one) of the block positions at level k.

E.g., Block i at level k+1 must be placed in block (i mod 4)
at level k.

Conflict misses occur when multiple data objects all map to
the same level k block. Note: there still may be empty slots in
the cache.

E.g., Referencing blocks 0, 8, 0, 8, 0, 8, . . . would miss every
time.

Capacity miss: the set of active cache blocks (working set) is larger
than the cache.

CS429 Slideset 18: 16 Cache I

Cache Memories

L1 and L2 cache memories are small, fast SRAM-based
memories managed automatically in hardware. They hold
frequently accessed blocks of main memory.

CPU looks first for data in L1, then in L2, then in main
memory.

The typical bus structure is shown below.

L1

cache

L2 cache

register file

ALU

Bridge
main

memory
I/Osystem bus

bus

memory

CPU chip

bus interface
cache bus

CS429 Slideset 18: 17 Cache I

Inserting an L1 Cache

...

...

...

Register file

L1 Cache

wxyz

pqrs

abcdblock 10

block 21

block 30

line 0

line k

Main memory

The tiny, very fast CPU register file has
room for a small number of 8-byte words.

The transfer unit between register file and
cache is an 8-byte block.

The small, fast L1 cache has room for k
lines (each containing several words).

The transfer unit between cache and main
memory is a block of bytes.

The big, slow main memory has room for
many blocks.

CS429 Slideset 18: 18 Cache I

Multi-Level Caches

Options: separate data and instruction caches, or a unified cache.
Having separate data and instruction memories characterizes the
Harvard architecture.

Processor

Regs
L1

d−cache

L1

i−cache

Unified

L2

cache

Memory Disk

registers L1 L2 memory disk

size 200B 8-64KB 1-4MB SRAM 128MB DRAM 30GB
speed 3ns 3ns 6ns 60ns 8ms
$/MB $100 $1.50 $0.05
line size 8B 32B 32B 8KB

CS429 Slideset 18: 19 Cache I

Getting Info on Your CPU

o s c a r : ˜/ cs429 /c> l s c p u
A r c h i t e c t u r e : x86 64
CPU op−mode (s) : 32− b i t , 64− b i t
Byte Order : L i t t l e Endian
CPU(s) : 8
On− l i n e CPU(s) l i s t : 0−7
Thread (s) pe r c o r e : 2
Core (s) pe r s o c k e t : 4
Socket (s) : 1
NUMA node (s) : 1
Model name : I n t e l (R) Xeon (R) CPU E3−1270 v3 @

3 .50GHz
Stepp ing : 3
CPU MHz: 3574.375
CPU max MHz: 3900.0000
CPU min MHz: 800.0000
BogoMIPS : 6984.06
V i r t u a l i z a t i o n : VT−x
L1d cache : 32K
L1 i cache : 32K
L2 cache : 256K
L3 cache : 8192K
NUMA node0 CPU(s) : 0−7

CS429 Slideset 18: 20 Cache I

Summary

This slideset:

Locality: Spatial and Temporal

Cache principles

Multi-level cache hierarchies

Next time:

Cache organization

Replacement and writes

Programming considerations

CS429 Slideset 18: 21 Cache I

