Topics of this Slideset

- Why bits?
- Representing information as bits
 - Binary and hexadecimal
 - Byte representations: numbers, characters, strings, instructions, etc.
- Bit level manipulations
 - Boolean algebra
 - C constructs

There are 10 kinds of people in the world: those who understand binary, and those who don’t!

Why Not Decimal (Base 10)?

Base 10 Number Representation.

- Fingers are called as "digits."
- Natural representation for financial transactions. Floating point number cannot exactly represent $1.20.
- Even carries through in scientific notation: 1.5213×10^4

If we lived in Homer Simpson’s world, we’d all use octal!

Why Not Base 10?

Implementing Electronically

- 10 different values are hard to store. ENIAC (First electronic computer) used 10 vacuum tubes / digits
- They’re hard to transmit. Need high precision to encode 10 signal levels on single wire.
- Messy to implement digital logic functions: addition, multiplication, etc.
Alternative: Binary Representation

Base 2 Number Representation
- Represent 15213\(_{10}\) as \(1110110111011_{2}\)
- Represent 1.20\(_{10}\) as \(1.0011001100110011[0011]..._{2}\)
- Represent \(1.5213 \times 10^4\) as \(1.11011011011011_{2} \times 2^{13}\)

Electronic Implementation
- Easy to store bits with bistable elements.
- Reliably transmitted on noisy and inaccurate wires.

Great Reality 7: Whatever you plan to store on a computer ultimately has to be represented as a finite collection of bits.

That’s true whether it’s integers, reals, characters, strings, data structures, instructions, programs, pictures, videos, etc.

That really means that only discrete quantities can be represented exactly. Non-discrete (continuous) quantities have to be approximated.

Representing Data

To store data of type X, someone had to invent a mapping from items of type X to bit strings. That’s the representation mapping.

In a sense the representation is arbitrary. The representation is just a mapping from the domain onto a finite set of bit strings.

But some representations are better than others. Why would that be? Hint: what operations do you want to support?

Some Representations

Suppose you want to represent the finite set of natural numbers \([0...7]\) as 3-bit strings.

<table>
<thead>
<tr>
<th>Dec.</th>
<th>Rep1</th>
<th>Rep2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>101</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>011</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>010</td>
</tr>
<tr>
<td>3</td>
<td>000</td>
<td>011</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>010</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>001</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>111</td>
</tr>
</tbody>
</table>

Can you see why one of these representations is “better” than the other? How would you do addition using Rep1?
A “good” mapping will map X data onto bit strings (B) in a way that makes it easy to compute common operations on that data. I.e., the following diagram must commute, for a reasonable choice of conc-op.

```
\[
\begin{array}{c}
X \\
\downarrow{\text{abs-op}} \\
rep \\
\downarrow{\text{conc-op}} \\
B
\end{array}
\quad \begin{array}{c}
X \\
\uparrow{\text{rep}^{-1}} \\
\uparrow{\text{rep}} \\
\downarrow{\text{conc-op}} \\
B
\end{array}
\]
```

To carry out any operation at the C level means converting the data into bit strings, and implementing an operation on the bit strings that has the “intended effect” under the mapping.

```
int x;
int y;
...
t = x + y;
```

Important Fact: If you are going to represent any type in \(k \) bits, you can only represent \(2^k \) different values. *There are exactly as many ints as floats on x86.*

Important Fact: The same bit string can represent an integer (signed or unsigned), float, character string, list of instructions, address, etc. depending on the context.

Since it’s tedious always to think in terms of bits, we group them together into larger units. *Sizes of these units depends on the architecture / language.*
Byte = 8 bits
Which can be represented in various forms:
- Binary: 00000000₂ to 11111111₂
- Decimal: 0₁₀ to 255₁₀
- Hexadecimal: 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B₁₆ in C as 0xFA1D37B or 0xfa1d37b

BTW: one hexadecimal digit represents 4 bits (one nybble).

### Hex	Dec	Binary
0 | 0 | 0000
1 | 1 | 0001
2 | 2 | 0010
3 | 3 | 0011
4 | 4 | 0100
5 | 5 | 0101
6 | 6 | 0110
7 | 7 | 0111
8 | 8 | 1000
9 | 9 | 1001
A | 10 | 1010
B | 11 | 1011
C | 12 | 1100
D | 13 | 1101
E | 14 | 1110
F | 15 | 1111

Note: this picture is appropriate for a 32-bit, big endian machine. How did I know that?

Byte-Oriented Memory Organization
- Conceptually, memory is a very large array of bytes.
- Actually, it’s implemented with hierarchy of different memory types.
 - SRAM, DRAM, disk.
 - The OS only allocates storage for regions actually used by program.
- In Unix and Windows, address space private to particular “process.”
 - Encapsulates the program being executed.
 - Program can clobber its own data, but not that of others.

Compiler and Run-Time System Control Allocation
- Where different program objects should be stored.
- Multiple storage mechanisms: static, stack, and heap.
- In any case, all allocation within single virtual address space.
Machines generally have a specific “word size.”

- It’s the nominal size of addresses on the machine.
- Most current machines run 64-bit software (8 bytes).
 - 32-bit software limits addresses to 4GB.
 - Becoming too small for memory-intensive applications.
- All x86 current hardware systems are 64 bits (8 bytes). Potentially address around 1.8×10^{19} bytes.
- Machines support multiple data formats.
 - Fractions or multiples of word size.
 - Always integral number of bytes.
- X86-hardware systems operate in 16, 32, and 64-bit modes.
 - Initially starts in 286 mode, which is 16-bit.
 - Under programmer control, 32- and 64-bit modes are enabled.

Addresses Specify Byte Locations

- Which is the address of the first byte in word.
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit).
- Addresses of multi-byte data items are typically aligned according to the size of the data.

Data Representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Alpha</th>
<th>Intel x86</th>
<th>AMD 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long int</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>8</td>
<td>10/12</td>
</tr>
<tr>
<td>char *</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>other pointer</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

The integer data types (int, long int, short, char) can all be either signed or unsigned.

Byte Ordering

How should bytes within a multi-byte data item be ordered in memory?

Given 64-bit hex value 0x000102030405060708, it is common to store this in memory in one of two formats: big endian or little endian.
Byte Ordering

Conventions
- Sun, PowerPC MacIntosh computers are “big endian” machines: most significant byte has lowest (first) address.
- Alpha, Intel MacIntosh, PC’s are “little endian” machines: least significant byte has lowest address.
- ARM processor offers support for big endian, but mainly they are used in their default, little endian configuration.
- There are many (hundreds) of microcontrollers so check before you start programming!

Big Endian: Most significant byte has lowest (first) address.

Little Endian: Least significant byte has lowest address.

Example:
- Int variable x has 4-byte representation 0x01234567.
- Address given by &x is 0x100

<table>
<thead>
<tr>
<th>Address</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

Little Endian:

<table>
<thead>
<tr>
<th>Address</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>

Reading Little Endian Listings

Disassembly
- Yields textual representation of binary machine code.
- Generated by program that reads the machine code.

Example Fragment (IA32):

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365: 5b</td>
<td></td>
<td>pop %ebx</td>
<td></td>
</tr>
<tr>
<td>8048366: c3</td>
<td>ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
<td></td>
</tr>
<tr>
<td>804836c: bb</td>
<td>28 00 00 00</td>
<td>cmpl $0x0.0x28(%ebx)</td>
<td></td>
</tr>
</tbody>
</table>

Deciphering Numbers: Consider the value 0x12ab in the second line of code:
- Pad to 4 bytes: 0x000012ab
- Split into bytes: 00 00 12 ab
- Make little endian: ab 12 00 00

Examining Data Representations

Code to Print Byte Representations of Data
Casting a pointer to unsigned char * creates a byte array.

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("\%p\t\%02x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- %p: print pointer
- %x: print hexadecimal
Show bytes execution example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x007fffffff90c56c7c 0x006d 0x0007fffffff90c56c7d 0x003b 0x0000007fffffff90c56c7e 0x0000 0x00007fffffff90c56c7f 0x0000
```

```c
int A = 15213;
int B = -15213;
long int C = 15213;

15213_{10} = 0011101101101101 = 3B6D_{16}
```

<table>
<thead>
<tr>
<th>Linux (little endian)</th>
<th>Alpha (little endian)</th>
<th>Sun (big endian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 6D 3B 00 00</td>
<td>6D 3B 00 00</td>
<td>00 00 3B 6D</td>
</tr>
<tr>
<td>B 93 C4 FF FF</td>
<td>93 C4 FF FF</td>
<td>FF FF C4 93</td>
</tr>
<tr>
<td>C 6D 3B 00 00 00 00 00 00 00 00</td>
<td>6D 3B 00 00 00 00 00 00 00</td>
<td>00 00 00 00 00 00 00 3B 6D</td>
</tr>
</tbody>
</table>

We'll cover the representation of negatives later.

Representing Pointers

```c
int B = -15213;
int *P = &B;
```

Linux Address:

Hex: BFFFF8D4AFBB4CD0
In memory: D0 4C BB AF D4 F8 FF BF

Sun Address:

Hex: EFFFFBF2CAA2C15C0
In memory: EF FB 2C AA 2C 15 C0

Pointer values generally are not predictable. Different compilers and machines assign different locations.

Representing Floats

All modern machines implement the IEEE Floating Point standard. This means that it is consistent across all machines.

```c
float F = 15213.0;
```

IEEE 754 Floating Point Standard:

```
s e-exponent m=mantissa
1 bit 8 bits 23 bits
```

```
number = (-1)^s * (1.m) * 2^{e-127}
```

Binary: 010001100110110110110110100000000000
Hex: 466DB400
In Memory (Linux/Alpha): 00 B4 6D 46
In Memory (Sun): 46 6D B4 00

Note that it's not the same as the int representation, but you can see that the int is in there, if you know where to look.
Representing Strings

- Strings are represented by a sequence of characters.
- Each character is encoded in ASCII format.
 - Standard 7-bit encoding of character set.
 - Other encodings exist, but are less common.
- Strings should be null-terminated. That is, the final character has ASCII code 0. I.e., a string of k chars requires $k + 1$ bytes.

Compatibility

- Byte ordering (endian-ness) is not an issue since the data are single byte quantities.
- Text files are generally platform independent, except for different conventions of line break character(s).

Representing Instructions

```c
int sum(int x, int y) {
    return x + y;
}
```

For this example, Alpha and Sun use two 4-byte instructions. They use differing numbers of instructions in other cases.

PC uses 7 instructions with lengths 1, 2, and 3 bytes. Windows and Linux are not fully compatible.

Different machines typically use different instructions and encodings.

Instruction sequence for sum program:

- **Alpha:** 00 00 30 42 01 80 FA 68
- **Sun:** 81 C3 E0 08 90 02 00 09
- **PC:** 55 89 E5 8B 45 0C 03 45 08 89 EC 5D C3

Machine Level Code Representation

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch
- Instructions are encoded as sequences of bytes.
 - Alpha, Sun, PowerPC Mac use 4 byte instructions (Reduced Instruction Set Computer" (RISC)).
 - PC’s and Intel Mac’s use variable length instructions (Complex Instruction Set Computer (CISC)).
- Different instruction types and encodings for different machines.
- Most code is not binary compatible.

Remember: Programs are byte sequences too!
Recall **Great Reality 7**: Whatever you plan to store on a computer ultimately has to be represented as a finite collection of bits.

That’s true whether it’s integers, reals, characters, strings, data structures, instructions, programs, pictures, videos, audio files, etc. Anything!

Boolean Algebra

And: \(A \& B = 1 \) when both \(A = 1 \) and \(B = 1 \).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>&</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not: \(\neg A = 1 \) when \(A = 0 \).

<table>
<thead>
<tr>
<th>A</th>
<th>\neg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Or: \(A \lor B = 1 \) when either \(A = 1 \) or \(B = 1 \), but not both.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>\lor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Xor: \(A \oplus B = 1 \) when either \(A = 1 \) or \(B = 1 \), but not both.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Application of Boolean Algebra

In a 1937 MIT Master’s Thesis, Claude Shannon showed that Boolean algebra would be a great way to model digital networks.

At that time, the networks were relay switches. But today, all combinational circuits can be described in terms of Boolean “gates.”
Boolean Algebra Properties

Some boolean algebra properties are similar to integer arithmetic, some are not.

Commutativity:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \lor B = B \lor A$</td>
<td>$A + B = B + A$</td>
</tr>
<tr>
<td>$A \land B = B \land A$</td>
<td>$A \land B = B \land A$</td>
</tr>
</tbody>
</table>

Associativity:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(A \lor B) \lor C = A \lor (B \lor C)$</td>
<td>$(A + B) + C = A + (B + C)$</td>
</tr>
<tr>
<td>$(A \land B) \land C = A \land (B \land C)$</td>
<td>$(A \land B) \land C = A \land (B \land C)$</td>
</tr>
</tbody>
</table>

Product Distributes over Sum:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \land (B \lor C) = (A \land B) \lor (A \land C)$</td>
<td>$A \land (B + C) = (A \land B) + (A \land C)$</td>
</tr>
</tbody>
</table>

Sum and Product Identities:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \lor 0 = A$</td>
<td>$A + 0 = A$</td>
</tr>
<tr>
<td>$A \land 1 = A$</td>
<td>$A \land 1 = A$</td>
</tr>
</tbody>
</table>

Boolean: Absorption

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \land (A \land B) = A$</td>
<td>$A + (A \land B) \neq A$</td>
</tr>
<tr>
<td>$A \lor (A \land B) = A$</td>
<td>$A \lor (A + B) \neq A$</td>
</tr>
</tbody>
</table>

Boolean: Laws of Complements

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \lor \sim A = 1$</td>
<td>$A + \sim A \neq 1$</td>
</tr>
</tbody>
</table>

Ring: Every element has additive inverse

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \lor \sim A \neq 0$</td>
<td>$A + \sim A = 0$</td>
</tr>
</tbody>
</table>

Zero is product annihilator:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \land 0 = 0$</td>
<td>$A \land 0 = 0$</td>
</tr>
</tbody>
</table>

Cancellation of negation:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sim (\sim A) = A$</td>
<td>$-(\sim A) = \sim A$</td>
</tr>
</tbody>
</table>

The following boolean algebra rules don’t have analogs in integer arithmetic.

Boolean: Sum distributes over product

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \lor (B \land C) = (A \lor B) \land (A \lor C)$</td>
<td>$A + (B \land C) \neq (A + B) \land (A + C)$</td>
</tr>
</tbody>
</table>

Boolean: Idempotency

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \land A = A$</td>
<td>$A + A \neq A$</td>
</tr>
<tr>
<td>$A \lor A = A$</td>
<td>$A \land A \neq A$</td>
</tr>
</tbody>
</table>

Ring: Every element has additive inverse

<table>
<thead>
<tr>
<th>Operation</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \lor \sim A \neq 0$</td>
<td>$A + \sim A = 0$</td>
</tr>
</tbody>
</table>
Properties of & and ^

Commutative sum: \(A \hat{\lor} B = B \hat{\lor} A \)
Commutative product: \(A \& B = B \& A \)
Associative sum: \((A \hat{\lor} B) \hat{\lor} C = A \hat{\lor} (B \hat{\lor} C)\)
Associative product: \((A \& B) \& C = A \& (B \& C)\)
Prod. over sum: \(A \& (B \hat{\lor} C) = (A \& B) \hat{\lor} (A \& C)\)
0 is sum identity: \(A \hat{\lor} 0 = A\)
1 is prod. identity: \(A \& 1 = A\)
0 is product annihilator: \(A \& 0 = 0\)
Additive inverse: \(A \hat{\lor} A = 0\)

DeMorgan’s Laws
Express & in terms of |, and vice-versa:
\[A \& B = \sim (\sim A | \sim B) \]
\[A|B = \sim (\sim A \& \sim B) \]

Exclusive-Or using Inclusive Or:
\[A \hat{\lor} B = (\sim A \& B) | (A \& \sim B) \]
\[A \hat{\lor} B = (A|B) \& \sim (A \& B) \]

Generalized Boolean Algebra

We can also operate on bit vectors (bitwise). All of the properties of Boolean algebra apply:

<table>
<thead>
<tr>
<th>01101001</th>
<th>01101001</th>
<th>01101001</th>
<th>01101001</th>
</tr>
</thead>
<tbody>
<tr>
<td>& 01010101</td>
<td></td>
<td>01010101</td>
<td>~ 01010101</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>01000001</td>
<td>01111101</td>
<td>00111100</td>
<td>10101010</td>
</tr>
</tbody>
</table>

Bit Level Operations in C

The operations &, |, ~, ^ are all available in C.
- Apply to any integral data type: long, int, short, char.
- View the arguments as bit vectors.
- Operations are applied bit-wise to the argument(s).

Examples: (char data type)

<table>
<thead>
<tr>
<th>~ 0x41</th>
<th>~ 01000001</th>
<th>~ 0x00</th>
<th>~ 00000002</th>
<th>0x69 & 0x55</th>
<th>01101001 & 01010101</th>
<th>0x69</th>
<th>0x55</th>
<th>01101001</th>
<th>01010101</th>
<th>01101001^01010101</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sim 0x41)</td>
<td>(\sim 01000001)</td>
<td>(\sim 0x00)</td>
<td>(\sim 00000002)</td>
<td>(0x69 & 0x55)</td>
<td>(01101001 & 01010101)</td>
<td>(0x69</td>
<td>0x55)</td>
<td>(01101001</td>
<td>01010101)</td>
<td>(01101001^01010101)</td>
</tr>
</tbody>
</table>
Logical Operators in C

There is another set of operators in C, called the *logical operators*, (**, ||, !). These treat inputs as booleans, not as strings of booleans.

- View 0 as “False.”
- View anything nonzero as “True.”
- Always return 0 or 1.
- Always do short-circuit evaluation (early termination)
- There isn’t a “logical” xor, but != works if you know the inputs are boolean.

Examples:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>!0x41</td>
<td>0x00</td>
</tr>
<tr>
<td>!0x00</td>
<td>0x01</td>
</tr>
<tr>
<td>!!0x41</td>
<td>0x01</td>
</tr>
<tr>
<td>!!0x69 & 0x55</td>
<td>0x01</td>
</tr>
<tr>
<td>!!0x69</td>
<td></td>
</tr>
</tbody>
</table>

Representing Sets with Masks

Representation

A bit vector `a` may represent a subset `S` of some “reference set” (actually list) `L`: `a_j = 1` iff `L[j] ∈ S`.

Bit vector A:

- 01101001 represents `{0, 3, 5, 6}`
- 76543210

Bit vector B:

- 01010101 represents `{0, 2, 4, 6}`
- 76543210

What bit operations on these set representations correspond to: intersection, union, complement?

Representing Sets

Bit vector A: 01101001 = {0, 3, 5, 6}
Bit vector B: 01010101 = {0, 2, 4, 6}

Operations:

Given the two sets above, perform these bitwise ops to obtain:

<table>
<thead>
<tr>
<th>Set operation</th>
<th>Boolean op</th>
<th>Result</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection</td>
<td>A & B</td>
<td>01000001</td>
<td>{0, 6}</td>
</tr>
<tr>
<td>Union</td>
<td>A</td>
<td>B</td>
<td>01111101</td>
</tr>
<tr>
<td>Symmetric difference</td>
<td>A ^ B</td>
<td>00111100</td>
<td>{2, 3, 4, 5}</td>
</tr>
<tr>
<td>Complement</td>
<td>~A</td>
<td>10010110</td>
<td>{1, 2, 4, 7}</td>
</tr>
</tbody>
</table>

Example

Given such a set of switches on floors A and B, how could you store the following information conveniently?

- Which lights are on on each floor?
- Which lights are on both floors?
- Which lights are on on either floor?
- Which lights are on on floor A but not floor B?
Shift Operations

Left Shift: $x << y$
- Shift bit vector x left by y positions
 - Throw away extra bits on the left.
 - Fill with 0’s on the right.

Right Shift: $x >> y$
- Shift bit vector x right by y positions.
 - Throw away extra bits on the right.
 - Logical shift: Fill with 0’s on the left.
 - Arithmetic shift: Replicate with most significant bit on the left.

Unlike Java, C uses the same operator for logical and arithmetic right shift; the compiler “guesses” which one you meant according to the type of the operand.

Shift Examples

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x << 3$</td>
<td>00010000</td>
</tr>
<tr>
<td>$x >> 2$ (logical)</td>
<td>00011000</td>
</tr>
<tr>
<td>$x >> 2$ (arithmetic)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x << 3$</td>
<td>00010000</td>
</tr>
<tr>
<td>$x >> 2$ (logical)</td>
<td>00101000</td>
</tr>
<tr>
<td>$x >> 2$ (arithmetic)</td>
<td>11101000</td>
</tr>
</tbody>
</table>

For right shift, the compiler will choose arithmetic shift if the argument is signed, and logical shift if unsigned.

Cool Stuff with XOR

Bitwise XOR is a form of addition, with the extra property that each value is its own additive inverse: $A \oplus A = 0$.

```c
void funny_swap(int *x, int *y)
{
    *x = *x ^ *y; /* #1 */
    *y = *x ^ *y; /* #2 */
    *x = *x ^ *y; /* #3 */
}
```

<table>
<thead>
<tr>
<th></th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A \oplus B</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A \oplus B</td>
<td>(A \oplus B) \oplus B = A</td>
</tr>
<tr>
<td>3</td>
<td>(A \oplus B) \oplus A = B</td>
<td>A</td>
</tr>
</tbody>
</table>

Is there ever a case where this code fails?

Main Points

It’s all about bits and bytes.
- Numbers
- Programs
- Text

Different machines follow different conventions.
- Word size
- Byte ordering
- Representations

Boolean algebra is the mathematical basis.
- Basic form encodes “False” as 0 and “True” as 1.
- General form is like bit-level operations in C; good for representing and manipulating sets.