
CS429: Computer Organization and Architecture

Integers

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: June 10, 2019 at 14:22

CS429 Slideset 3: 1 Integers

Topics of this Slideset

Numeric Encodings: Unsigned and two’s complement

Programming Implications: C promotion rules

Basic operations:

addition, negation, multiplication
Consequences of overflow
Using shifts to perform power-of-2 multiply/divide

CS429 Slideset 3: 2 Integers

C Puzzles

i n t x = foo () ;
i n t y = bar () ;
un s i gned ux = x ;
uns i gned uy = y ;

Assume a machine with 32-bit, two’s complement integers.

For each of the following, either:
Argue that is true for all argument values;
Give an example where it’s not true.

x < 0 → ((x*2) < 0

ux >= 0

(x & 7) == 7 → (x<<30) < 0

ux > -1

x > y → -x < -y

x * x >= 0

x > 0 && y > 0 → x + y > 0

x >= 0 → -x <= 0

x <= 0 → -x >= 0

CS429 Slideset 3: 3 Integers

Encoding Integers: Unsigned

For unsigned integers, we treat all values as non-negative and use
positional notation as with non-negative decimal numbers.

Assume we have a w length bit string X.

Unsigned: B2Uw (X) =
∑

w−1
i=0 Xi × 2i

CS429 Slideset 3: 4 Integers

Unsigned Integers: 4-bit System

0000

1000

1111

1110

1101

1100

1011

1010

1001 0111

0110

0101

0100

0011

0010
0 1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

0001

CS429 Slideset 3: 5 Integers

Encoding Integers: Two’s Complement

Two’s complement is a way of encoding integers, including some
positive and negative values. It’s exactly like unsigned except the

high order bit is given negative weight.

Two’s complement: B2Tw (X) = −Xw−1 × 2w−1 +
∑

w−2
i=0 Xi × 2i

Decimal Hex Binary

15213 3B 6D 00111011 01101101

-15213 C4 93 11000100 10010011

Sign Bit:
For 2’s complement, the most significant bit indicates the sign.

0 for nonnegative

1 for negative

CS429 Slideset 3: 6 Integers

Encoding Example

x = 15213: 00111011 01101101
y = −15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

CS429 Slideset 3: 7 Integers

Signed Integers: 4-bit System

0000

1000

1111

1110

1101

1100

1011

1010

1001 0111

0110

0101

0100

0011

0010
0 1

2

3

4

5

6

7
−8

−7

−6

−5

−4

−3

−2

−1

0001

CS429 Slideset 3: 8 Integers

Numeric Ranges

Unsigned Values

UMin = 0 000...0

UMax = 2w − 1 111...1

Two’s Complement Values

TMin = −2w−1 100...0

TMax = 2w−1 − 1 011...1

Values for w = 16

Decimal Hex Binary

UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

CS429 Slideset 3: 9 Integers

Values for Different Word Sizes

w 8 16 32 64

UMax 255 65,525 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

Observations

|TMin| = TMax + 1

UMax = 2 × TMax + 1

C Programming

#i n c l u d e < l i m i t s . h>

Declares various constants: ULONG_MAX, LONG_MAX, LONG_MIN,
etc. The values are platform-specific.

CS429 Slideset 3: 10 Integers

Unsigned and Signed Numeric Values

Equivalence: Same encoding for
nonnegative values

Uniqueness:

Every bit pattern represents
a unique integer value

Each representable integer
has unique encoding

Can Invert Mappings:

inverse of B2U(X) is U2B(X)

inverse of B2T(X) is T2B(X)

X B2U(X) B2T(X)

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7

1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1

CS429 Slideset 3: 11 Integers

Casting Signed to Unsigned

C allows conversions from signed to unsigned.

s h o r t i n t x = 15213;
uns i gned s h o r t ux = (uns i gned s h o r t) x ;
s h o r t i n t y = −15213;
uns i gned s h o r t uy = (uns i gned s h o r t) y ;

Resulting Values:

The bit representation stays the same.

Nonnegative values are unchanged.

Negative values change into (large) positive values.

CS429 Slideset 3: 12 Integers

Signed vs Unsigned in C

Constants

By default, constants are considered to be signed integers.

They are unsigned if they have “U” as a suffix: 0U,
4294967259U.

Casting

Explicit casting between signed and unsigned is the same as
U2T and T2U:

i n t tx , t y ;
un s i gned ux , uy ;
t x = (i n t) ux ;
uy = (uns i gned) ty ;

Implicit casting also occurs via assignments and procedure
calls.

t x = ux ;
uy = ty ;

CS429 Slideset 3: 13 Integers

Casting Surprises

Expression Evaluation

If you mix unsigned and signed in a single expression, signed
values implicitly cast to unsigned.

This includes when you compare using <, >, ==, <=, >=.

Const 1 Const 2 Rel. Evaluation

0 0U == unsigned
-1 0 < signed
-1 0U > unsigned

2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned

-1 -2 > signed
(unsigned) 1 -2 < unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

CS429 Slideset 3: 14 Integers

Sign Extension

Task: Given a w-bit signed integer x, convert it to a w+k-bit
integer with the same value.

Rule: Make k copies of the sign bit :

x ′ = xw−1, . . . xw−1, xw−2, . . . , w0

Why does this work?

CS429 Slideset 3: 15 Integers

Sign Extension Example

s h o r t i n t x = 15213;
i n t i x = (i n t) x ;
s h o r t i n t y = −15213;
i n t i y = (i n t) y ;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

In converting from smaller to larger signed integer data types, C
automatically performs sign extension.

CS429 Slideset 3: 16 Integers

Why Use Unsigned?

Don’t use just to ensure numbers are nonzero.

Some C compilers generate less efficient code for unsigned.

uns i gned i ;
f o r (i =1; i < cnt ; i ++)

a [i] += a [i −1]

It’s easy to make mistakes.

f o r (i = cnt −2; i >= 0 ; i −−)
a [i] += a [i +1]

Do use when performing modular arithmetic.

multiprecision arithmetic

other esoteric stuff

Do use when you need extra bits of range.

CS429 Slideset 3: 17 Integers

Negating Two’s Complement

To find the negative of a number in two’s complement form:
complement the bit pattern and add 1:

∼ x + 1 = −x

Example:
10011101 = 0x9C = −9910

complement:
01100010 = 0x62 = 9810

add 1:
01100011 = 0x63 = 9910

Try it with: 11111111 and 00000000.

CS429 Slideset 3: 18 Integers

Complement and Increment Examples

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

˜x -15214 C4 92 11000100 10010010

˜x+1 -15213 C4 93 11000100 10010011

0 0 00 00 00000000 00000000

˜0 -1 FF FF 11111111 11111111

˜0+1 0 00 00 00000000 00000000

CS429 Slideset 3: 19 Integers

Unsigned Addition

Given two w-bit unsigned quantities u, v, the true sum may be a
w+1-bit quantity.

Discard the carry bit and treat the result as an unsigned integer.

Thus, unsigned addition implements modular addition.

UAddw (u, v) = (u + v) mod 2w

UAddw (u, v) =

{

u + v u + v < 2w

u + v − 2w u + v ≥ 2w

CS429 Slideset 3: 20 Integers

Detecting Unsigned Overflow

Task:
Determine if s = UAddw (u, v) = u + v .

Claim: We have overflow iff:

s < u or s < v .

BTW: s < u iff s < v . So it’s OK to check only one of these
conditions because both will be true when there’s an overflow.

On the machine, this causes the carry flag to be set.

CS429 Slideset 3: 21 Integers

Properties of Unsigned Addition

W-bit unsigned addition is:

Closed under addition:

0 ≤ UAddw (u, v) ≤ 2w − 1

Commutative

UAddw (u, v) = UAddw (v , u)

Associative

UAddw (t, UAddw (u, v)) = UAddw (UAddw (t, u), v)

0 is the additive identity

UAddw (u, 0) = u

Every element has an additive inverse
Let UCompw (u) = 2w − u, then

UAddw (u, UCompw (u)) = 0

CS429 Slideset 3: 22 Integers

Two’s Complement Addition

Given two w-bit signed quantities u, v, the true sum may be a
w+1-bit quantity.

Discard the carry bit and treat the result as a two’s complement
number.

TAddw (u, v) =











u + v + 2w u + v < TMinw (NegOver)
u + v TMinw < u + v ≤ TMaxw

u + v − 2w TMaxw < u + v (PosOver)

CS429 Slideset 3: 23 Integers

Two’s Complement Addition

TAdd and UAdd have identical bit-level behavior.

i n t s , t , u , v ;
s = (i n t) ((uns i gned) u + (uns i gned) v) ;
t = u + v

This will give s == t.

CS429 Slideset 3: 24 Integers

Detecting 2’s Complement Overflow

Task:
Determine if s = TAddw (u, v) = u + v .

Claim: We have overflow iff either:

u, v < 0 but s ≥ 0 (NegOver)

u, v ≥ 0 but s < 0 (PosOver)

Can compute this as:

ovf = (u<0 == v<0) && (u<0 != s<0);

On the machine, this causes the overflow flag to be set.

Why don’t we have to worry about the case where one input is
positive and one negative?

CS429 Slideset 3: 25 Integers

Properties of TAdd

TAdd is Isomorphic to UAdd.
This is clear since they have identical bit patterns.

Taddw (u, v) = U2T(UAddw (T2U(u), T2U(v)))

Two’s Complement under TAdd forms a group.

Closed, commutative, associative, 0 is additive identity.

Every element has an additive inverse:

Let TCompw (u) = U2T(UCompw (T2U(u)), then
TAddw (u, UCompw (u)) = 0

TCompw (u) =

{

−u u 6= TMinw

TMinw u = TMinw

CS429 Slideset 3: 26 Integers

Multiplication

Computing the exact product of two w-bit numbers x, y. This
is the same for both signed and unsigned.

Ranges:

Unsigned: 0 ≤ x ∗ y ≤ (2w − 1)2 = 22w − 2w+1 + 1, requires
up to 2w bits.

Two’s comp. min:
x ∗ y ≥ (−2w−1) ∗ (2w−1 − 1) = −22w−2 + 2w−1, requires up
to 2w − 1 bits.

Two’s comp. max: x ∗ y ≤ (−2w−1)2 = 22w−2, requires up to
2w (but only for TMin2

w).

Maintaining the exact result

Would need to keep expanding the word size with each
product computed.

Can be done in software with “arbitrary precision” arithmetic
packages.

CS429 Slideset 3: 27 Integers

Unsigned Multiplication in C

Given two w-bit unsigned quantities u, v, the true sum may be a
2w-bit quantity.

We just discard the most significant w bits, treat the result as
an unsigned number.

Thus, unsigned multiplication implements modular
multiplication.

UMultw (u, v) = (u × v) mod 2w

CS429 Slideset 3: 28 Integers

Unsigned vs. Signed Multiplication

Unsigned Multiplication

uns i gned ux = (uns i gned) x ;
un s i gned uy = (uns i gned) y ;
un s i gned up = ux ∗ uy ;

Truncates product to w-bit number: up = UMultw (ux , uy)

Modular arithmetic: up = (ux · uy) mod 2w

Two’s Complement Multiplication

i n t x , y ;
i n t p = x ∗ y ;

Compute exact product of two w-bit numbers x, y.

Truncate result to w-bit number: p = TMultw (x , y)

CS429 Slideset 3: 29 Integers

Unsigned vs. Signed Multiplication

Unsigned Multiplication

uns i gned ux = (uns i gned) x ;
un s i gned uy = (uns i gned) y ;
un s i gned up = ux ∗ uy ;

Two’s Complement Multiplication

i n t x , y ;
i n t p = x ∗ y ;

Relation

Signed multiplication gives same bit-level result as unsigned.

up == (unsigned) p

CS429 Slideset 3: 30 Integers

Multiply with Shift

A left shift by k, is equivalent to multiplying by 2k . This is true for
both signed and unsigned values.

u << 1 → u × 2
u << 2 → u × 4
u << 3 → u × 8
u << 4 → u × 16
u << 5 → u × 32
u << 6 → u × 64

Compilers often use shifting for multiplication, since shift and add
is much faster than multiply (on most machines).

u << 5 - u << 3 == u * 24

CS429 Slideset 3: 31 Integers

Aside: Floor and Ceiling Functions

Two useful functions on real numbers are the floor and ceiling

functions.

Definition: The floor function ⌊r⌋, is the greatest integer less than
or equal to r .

⌊3.14⌋ = 3

⌊−3.14⌋ = −4

⌊7⌋ = 7

Definition: The ceiling function ⌈r⌉, is the smallest integer greater
than or equal to r .

⌈3.14⌉ = 4

⌈−3.14⌉ = −3

⌈7⌉ = 7

CS429 Slideset 3: 32 Integers

Unsigned Divide by Shift

A right shift by k, is (approximately) equivalent to dividing by 2k ,
but the effects are different for the unsigned and signed cases.
Quotient of unsigned value by power of 2.

u >> k == ⌊u/2k⌋

Uses logical shift.

Division Computed Hex Binary

u 15213 15213 3B 6D 00111011 01101101

u >> 1 7606.5 7606 1D B6 00011101 10110110

u >> 4 950.8125 950 03 B6 00000011 10110110

u >> 8 59.4257813 59 00 3B 00000000 00111011

CS429 Slideset 3: 33 Integers

Signed Divide by Shift

Quotient of signed value by power of 2.

u >> k == ⌊u/2k⌋

Uses arithmetic shift. What does that mean?

Rounds in wrong direction when u < 0.

Division Computed Hex Binary

u -15213 -15213 C4 93 11000100 10010011

u >> 1 -7606.5 -7607 E2 49 11100010 01001001

u >> 4 -950.8125 -951 FC 49 11111100 01001001

u >> 8 -59.4257813 -60 FF C4 11111111 11000100

CS429 Slideset 3: 34 Integers

Correct Power-of-2 Division

We’ve seen that right shifting a negative number gives the wrong
answer because it rounds away from 0.

x >> k == ⌊x/2k⌋

We’d really like ⌈x/2k⌉ instead.

You can compute this as: ⌊(x + 2k − 1)/2k⌋. In C, that’s:

(x + (1<<k) −1) >> k

This biases the dividend toward 0.

CS429 Slideset 3: 35 Integers

Properties of Unsigned Arithmetic

Unsigned multiplication with addition forms a Commutative
Ring.

Addition is commutative

Closed under multiplication

0 ≤ UMultw (u, v) ≤ 2w − 1

Multiplication is commutative

UMultw (u, v) = UMultw (v , u)

Multiplication is associative

UMultw (t, UMultw (u, v)) = UMultw (UMultw (t, u), v)

1 is the multiplicative identity

UMultw (u, 1) = u

Multiplication distributes over addition

UMultw (t, UAddw (u, v)) = UAddw (UMultw (t, u), UMultw (t, v))

CS429 Slideset 3: 36 Integers

Properties of Two’s Complement Arithmetic

Isomorphic Algebras

Unsigned multiplication and addition: truncate to w bits

Two’s complement multiplication and addition: truncate to w
bits

Both form rings isomorphic to ring of integers mod 2w

Comparison to Integer Arithmetic

Both are rings

Integers obey ordering properties, e.g.
u > 0 → u + v > v

u > 0, v > 0 → u · v > 0

These properties are not obeyed by two’s complement
arithmetic.

TMax + 1 == TMin

15213 * 30426 == -10030 (for 16-bit words)

CS429 Slideset 3: 37 Integers

C Puzzle Answers

Assume a machine with 32-bit word size, two’s complement
integers.

i n t x = foo () ;
i n t y = bar () ;
un s i gned ux = x ;
uns i gned uy = y ;

x < 0 → ((x*2) < 0 False: TMin
ux >= 0 True: 0 = UMin
(x & 7) == 7 → (x<<30) < 0 True: x1 = 1
ux > -1 False: 0
x > y → -x < -y False: −1, TMin
x * x >= 0 False: 30426
x > 0 && y > 0 → x + y > 0 False: TMax, TMax
x >= 0 → -x <= 0 True: -TMax < 0
x <= 0 → -x >= 0 False: TMin

CS429 Slideset 3: 38 Integers

