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Mathematical properties
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Floating Point Puzzles

i n t x = . . . ;

f l o a t f = . . . ;

doub l e d = . . . ;

For each of the following, either:

argue that it is true for all argument values, or

explain why it is not true.

Assume neither d nor f is NaN.

x == (int)(float) x

x == (int)(double) x

f == (float)(double) f

d == (float) d

f == -(-f)

2/3 == 2/3.0

d < 0.0 → ((d*2) < 0.0)

d > f → -f > -d

d*d >= 0.0

(d+f)-d == f
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IEEE Floating Point Standard

IEEE Standard 754

Established in 1985 as a uniform standard for floating point
arithmetic

It is supported by all major CPUs.

Before 1985 there were many idiosyncratic formats.

Driven by Numerical Concerns

Nice standards for rounding, overflow, underflow

Hard to make go fast: numerical analysts predominated over
hardware types in defining the standard

Now all (add, subtract, multiply) operations are fast except
divide.
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Fractional Binary Numbers: Examples

The binary number bibi−1b2b1 . . . b0.b−1b−2b−3 . . . b−j represents
a particular (positive) sum. Each digit is multiplied by a power of
two according to the following chart:

Bit: bi bi−1 . . . b2 b1 b0 · b−1 b−2 b−3 . . . b−j

Weight: 2i 2i−1 . . . 4 2 1 · 1/2 1/4 1/8 . . . 2−j

Representation:

Bits to the right of the binary point represent fractional
powers of 2.

This represents the rational number:

i∑

k=−j

bk × 2k

The sign is treated separately.
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Fractional Binary Numbers: Example
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Fractional Binary Numbers: Examples

Value Representation
5 + 3/4 101.112

2 + 7/8 10.1112

63/64 0.1111112

Observations

Divide by 2 by shifting right

Multiply by 2 by shifting left

Numbers of the form 0.11111 . . .2 are just below 1.0

1/2 + 1/4 + 1/8 + . . . + 1/2i → 1.0
We use the notation 1.0 − ǫ.
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Representable Numbers

Limitation

You can only represent numbers of the form y + x/2i .

Other fractions (rationals) have repeating bit representations

Irrationals have infinite, non-repeating representations

Value Representation
1/3 0.0101010101[01]2
1/5 0.001100110011[0011]2
1/10 0.0001100110011[0011]2
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Aside: Converting Decimal Fractions to Binary

If you want to convert a decimal fraction to binary, it’s easy if you
use a simple iterative procedure.

1 Start with the decimal fraction (> 1) and multiply by 2.

2 Stop if the result is 0 (terminated binary) or a result you’ve
seen before (repeating binary).

3 Record the whole number part of the result.

4 Repeat from step 1 with the fractional part of the result.

0.375 ∗ 2 = 0.75

0.75 ∗ 2 = 1.5

0.5 ∗ 2 = 1.0

0.0

The result (following the binary point) is the series of whole
numbers components of the answers read from the top, i.e., 0.011.
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Aside: Converting Decimal Fractions to Binary (2)

Let’s try another one, 0.1 or 1/10

0.1 ∗ 2 = 0.2

0.2 ∗ 2 = 0.4

0.4 ∗ 2 = 0.8

0.8 ∗ 2 = 1.6

0.6 ∗ 2 = 1.2

0.2 ∗ 2 = 0.4

We could continue, but we see that it’s going to repeat forever
(since 0.2 repeats our multiplicand from the second line). Reading
the integer parts from the top gives 0[0011], since we’ll repeat the
last 4 bits forever.
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Floating Point Representation

Numerical Form
−1s × M × 2E

Sign bit s determines whether number is negative or positive.

Significand M is normally a fractional value in the range
[1.0 . . . 2.0)

Exponent E weights value by power of two.

Floats (32-bit floating point numbers)
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Floating Point Representation

Encoding

s exp frac

The most significant bit is the sign bit.

The exp field encodes E.

The frac field encodes M.

Float format:
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Floating Point Precisions

Encoding

s exp frac

The most significant bit is the sign bit.

The exp field encodes E.

The frac field encodes M.

Sizes

Single precision: 8 exp bits, 23 frac bits, for 32 bits total

Double precision: 11 exp bits, 52 frac bits, for 64 bits total

Extended precision: 15 exp bits, 63 frac bits (only
Intel-compatible machines)
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Normalized Numeric Values

Condition: exp 6= 000 . . . 0 and exp 6= 111 . . . 1
Exponent is coded as a biased value
E = Exp − Bias

Exp: unsigned value denoted by exp.

Bias: Bias value

In general: Bias = 2e−1 − 1, where e is the number of
exponent bits
Single precision: 127 (Exp: 1 . . . 254, E : −126 . . . 127)
Double precision: 1023 (Exp: 1 . . . 2046, E : −1022 . . . 1023)

Significand coded with implied leading 1
M = 1.xxx . . . x2

xxx . . . x : bits of frac

Minimum when 000 . . . 0 (M = 1.0)

Maximum when 111 . . . 1 (M = 2.0 − ǫ)

We get the extra leading bit “for free.”
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Converting Between Float and Decimal
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Normalized Encoding Example

Value:
float F = 15213.0;

1521310 = 111011011011012 = 1.11011011011012 × 213

Significand
M = 1.11011011011012

frac = 11011011011010000000000

Exponent
E = 13
Bias = 127
Exp = 140 = 10001100
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Normalized Encoding Example

Floating Point Representation
Hex: 466DB400
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

140: 100 0110 0
15213: 1110 1101 1011 01
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Normalized Example

Given the bit string 0x40500000, what floating point number does
it represent?
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Normalized Example

Given the bit string 0x40500000, what floating point number does
it represent?

Writing this as a bit string gives us:

0 10000000 10100000000000000000000

We see that this is a positive, normalized number.

exp = 128 − 127 = 1

So, this number is:

1.1012 × 21 = 11.012 = 3.2510
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Denormalized Values

Condition: exp = 000...0

Value

Exponent values: E = -Bias + 1 Why this value?

Floats: −126; Doubles: −1022

Significand value: M = 0.xxx . . . x2, where xxx . . . x are the
bits of frac.

Cases

exp = 000 . . . 0 and frac = 000 . . . 0

represents values of 0
notice that we have distinct +0 and -0

exp = 000 . . . 0 and frac 6= 000 . . . 0

These are numbers very close to 0.0
Lose precision as they get smaller
Experience “gradual underflow”
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Denormalized Example

Given the bit string 0x80600000, what floating point number does
it represent?
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Denormalized Example

Given the bit string 0x80600000, what floating point number does
it represent?

Writing this as a bit string gives us:

1 00000000 11000000000000000000000

We see that this is a negative, denormalized number with value:

−0.112 × 2−126 = −1.12 × 2−127
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Why That Exponent

The exponent (it’s not a bias) for denormalized floats is −126.
Why that number?

The smallest positive normalized float is 1.02 × 2−126. Where did I
get that number? All positive normalized floats are greater or
equal.

The largest positive denormalized float is
0.111111111111111111111112 × 2−126. Why? All positive
denorms are between this number and 0.

Note that the smallest norm and the largest denorm are incredibly
close together. How close? Thus, the normalized range flows
naturally into the denormalized range because of this choice of

exponent for denorms.
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Special Values

Condition: exp = 111...1

Cases

exp = 111 . . . 1 and frac = 000 . . . 0

Represents value of infinity (∞)
Result returned for operations that overflow
Sign indicates positive or negative
E.g., 1.0/0.0 = −1.0/ − 0.0 = +∞, 1.0/ − 0.0 = −∞

exp = 111 . . . 1 and frac 6= 000 . . . 0

Not-a-Number (NaN)
Represents the case when no numeric value can be determined
E.g., sqrt(−1), ∞ − ∞

How many 32-bit NaN’s are there?
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Tiny Floating Point Example

8-bit Floating Point Representation

The sign bit is in the most significant bit.

The next four bits are the exponent with a bias of 7.

The last three bits are the frac.

This has the general form of the IEEE Format

Has both normalized and denormalized values.

Has representations of 0, NaN, infinity.

7 6 3 2 0

s exp frac
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Values Related to the Exponent

Exp exp E 2E comment

0 0000 -6 1/64 (denorms)
1 0001 -6 1/64
2 0010 -5 1/32
3 0011 -4 1/16
4 0100 -3 1/8
5 0101 -2 1/4
6 0110 -1 1/2
7 0111 0 1
8 1000 +1 2
9 1001 +2 4
10 1010 +3 8
11 1011 +4 16
12 1100 +5 32
13 1101 +6 64
14 1110 +7 128
15 1111 n/a (inf, NaN)
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Dynamic Range

s exp frac E Value
0 0000 000 -6 0
0 0000 001 -6 1/8 × 1/64 = 1/512 closest to zero

Denormalized 0 0000 010 -6 2/8 × 1/64 = 2/512
numbers . . .

0 0000 110 -6 6/8 × 1/64 = 6/512
0 0000 111 -6 7/8 × 1/64 = 7/512 largest denorm
0 0001 000 -6 8/8 × 1/64 = 8/512 smallest norm
0 0001 001 -6 9/8 × 1/64 = 9/512

. . .
0 0110 110 -1 14/8 × 1/2 = 14/16

Normalized 0 0110 111 -1 15/8 × 1/2 = 15/16 closest to 1 below
numbers 0 0111 000 0 8/8 × 1 = 1

0 0111 001 0 9/8 × 1 = 9/8 closest to 1 above
0 0111 010 0 10/8 × 1 = 10/8

. . .
0 1110 110 7 14/8 × 128 = 224
0 1110 111 7 15/8 × 128 = 240 largest norm
0 1111 000 n/a ∞
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Simple Float System

Notice that the floating point numbers are not distributed evenly
on the number line.

Suppose M is the largest possible exponent, m is the smallest, 1
8 is

the smallest positive number representable, and 7
4 the largest

positive number representable. What is the format?
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Interesting FP Numbers

Description exp frac Numeric value
Zero 00 . . . 00 00 . . . 00 0.0

Smallest Pos. Denorm 00 . . . 00 00 . . . 01 2{−23,−52}
× 2{−126,−1022}

Single ≈ 1.4 × 10−45

Double ≈ 4.9 × 10−324

Largest Denorm. 00 . . . 00 11 . . . 11 (1.0 − ǫ) × 2{−126,−1022}

Single ≈ 1.18 × 10−38

Double ≈ 2.2 × 10−308

Smallest Pos. Norm. 00 . . . 01 00 . . . 00 1.0 × 2{−126,−1022}

Just larger than the largest denomalized.

One 01 . . . 11 00 . . . 00 1.0

Largest Norm. 11 . . . 10 11 . . . 11 (2.0 − ǫ) × 2{127,1023}

Single ≈ 3.4 × 1038

Double ≈ 1.8 × 10308
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Special Properties of Encoding

FP Zero is the Same as Integer Zero: All bits are 0.

Can (Almost) Use Unsigned Integer Comparison

Must first compare sign bits.

Must consider −0 = 0.

NaNs are problematic:

Will be greater than any other values.
What should the comparison yield?

Otherwise, it’s OK.

Denorm vs. normalized works.
Normalized vs. infinity works.
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Floating Point Operations

Conceptual View

First compute the exact result.

Make it fit into the desired precision.

Possibly overflows if exponent is too large.
Possibly round to fit into frac.

Rounding Modes (illustrated with $ rounding)
$1.40 $1.60 $1.50 $2.50 -$1.50

Toward Zero $1 $1 $1 $2 -$1
Round down (−∞) $1 $1 $1 $2 -$2
Round up (+∞) $2 $2 $2 $3 -$1
Nearest even (default) $1 $2 $2 $2 -$2

1 Round down: rounded result is close to but no greater than
true result.

2 Round up: rounded result is close to but no less than true
result.
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Closer Look at Round to Even

Default Rounding Mode

Hard to get any other kind without dropping into assembly.

All others are statistically biased; the sum of a large set of
values will consistently be under- or over-estimated.

Applying to Other Decimal Places / Bit Positions
When exactly halfway between two possible values, round so that
the least significant digit is even.

E.g., round to the nearest hundredth:

1.2349999 1.23 Less than half way
1.2350001 1.24 Greater than half way
1.2350000 1.24 Half way, round up
1.2450000 1.24 Half way, round down
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Rounding Binary Numbers

Binary Fractional Numbers

“Even” when least significant bit is 0.

Half way when bits to the right of rounding position = 10[0]2.

Examples

E.g., Round to nearest 1/4 (2 bits to right of binary point).

Value Binary Rounded Action Rounded Value

2 3/32 10.000112 10.00 (< 1/2: down) 2
2 3/16 10.001102 10.01 (> 1/2: up) 2 1/4
2 7/8 10.111002 11.00 (1/2: up) 3
2 5/8 10.101002 10.10 (1/2: down) 2 1/2
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Round to Even

When rounding to even, first check that the value to round is

actually exactly halfway between two values. Then, consider the
two possible choices and choose the one with a 0 in the final
position.

Example: round to nearest 1/4 using round to even:

1 1/2

1 5/8

1 3/4

1 3/4

1 7/8

2.0

1.1010000

1.10

1.11

1.1110000

10.00

1.11
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FP Multiplication

Operands: (−1)S1 × M1 × 2E1 , (−1)S2 × M2 × 2E2

Exact Result: (−1)S × M × 2E

Sign S: S1 xor S2

Significand M: M1 × M2

Exponent E: E1 + E2

Fixing

If M ≥ 2, shift M right, increment E

E is out of range, overflow

Round M to fit frac precision

Implementation
Biggest chore is multiplying significands.
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Multiplication Examples

Decimal Example

(−3.4 × 102)(5.2 × 104)
= −(3.4 × 5.2)(102 × 104)
= −17.68 × 106

= −1.768 × 107 adjust exponent
= −1.77 × 107 round

Binary Example

(−1.01 × 22)(1.1 × 24)
= −(1.01 × 1.1)(22 × 24)
= −1.111 × 26

= −10.0 × 26 round to even
= −1.0 × 27 adjust exponent
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Multiplication Warning

Binary Example

(−1.01 × 22)(1.1 × 24)
= −(1.01 × 1.1)(22 × 24)
= −1.111 × 26

= −10.0 × 26 round to even
= −1.0 × 27 adjust exponent

Be careful if you try to do this in the floating point format, rather
than in scientific notation. Since the exponents are biased in FP
format, adding them would give you:

(2 + bias) + (4 + bias) = 6 + 2*bias

To adjust you have to subtract the bias.
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FP Addition

Operands: (−1)S1 × M1 × 2E1 , (−1)S2 × M2 × 2E2

Assume E1 > E2

Exact Result: (−1)S × M × 2E

Sign S, Significand M; result of signed align and add.

Exponent E: E1

Fixing

If M ≥ 2, shift M right, increment E

If M < 1, shift M left k positions, decrement E by k

if E is out of range, overflow

Round M to fit frac precision

If you try to do this in the FP form, recall that both exponents are

biased.
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Addition Examples

Decimal Example

(−3.4 × 102) + (5.2 × 104)
= (−3.4 × 102) + (520.0 × 102) align exponents
= (−3.4 + 520.0) × 102

= 516.6 × 102

= 5.166 × 104 fix exponent
= 5.17 × 104 round

Binary Example

(−1.01 × 22) + (1.1 × 24)
= (−1.01 × 22) + (110.0 × 22) align exponents
= (−1.01 + 110.0) × 22

= 100.11 × 22

= 1.0011 × 24 fix exponent
= 1.01 × 24 round
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Mathematical Properties of FP Add

Compare to those of Abelian Group

Closed under addition? Yes, but may generate infinity or NaN.

Commutative? Yes.

Associative? No, because of overflow and inexactness of
rounding.

O is additive identity? Yes.

Every element has additive inverse? Almost, except for
infinities and NaNs.

Monotonicity

a ≥ b =⇒ a + c ≥ b + c? Almost, except for infinities and
NaNs.
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Mathematical Properties of FP Mult

Compare to those of Commutative Ring

Closed under multiplication? Yes, but may generate infinity or
NaN.

Multiplication Commutative? Yes.

Multiplication is Associative? No, because of possible overflow
and inexactness of rounding.

1 is multiplicative identity? Yes.

Multiplication distributes over addition? No, because of
possible overflow and inexactness of rounding.

Monotonicity

a ≥ b & c ≥ 0 =⇒ a × c ≥ b × c? Almost, except for
infinities and NaNs.
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Floating Point in C

C guarantees two levels

float: single precision

double: double precision

Conversions

Casting among int, float, and double changes numeric values

Double or float to int:

truncates fractional part
like rounding toward zero
not defined when out of range: generally saturates to TMin or
TMax

int to double: exact conversion as long as int has ≤ 53-bit
word size

int to float: will round according to rounding mode.
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Answers to FP Puzzles

i n t x = . . . ;

f l o a t f = . . . ;

doub l e d = . . . ;

Assume neither d nor f is NaN.

x == (int)(float) x No: 24 bit significand
x == (int)(double) x Yes: 53 bit significand
f == (float)(double) f Yes: increases precision
d == (float) d No: loses precision
f == -(-f) Yes: just change sign bit
2/3 == 2/3.0 No: 2/3 == 0
d < 0.0 → ((d*2) < 0.0) Yes
d > f → -f > -d Yes
d*d >= 0.0 Yes
(d+f)-d == f No: not associative
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Ariane 5

On June 4, 1996 an unmanned Ariane 5
rocket launched by the European Space
Agency exploded just forty seconds after
its lift-off from Kourou, French Guiana.
The rocket was on its first voyage, after
a decade of development costing $7
billion.

The destroyed rocket and its cargo were valued at $500 million.
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Ariane 5

The cause of the failure was a software error in the inertial
reference system.

Specifically a 64-bit floating point number relating to the
horizontal velocity of the rocket with respect to the platform was
converted to a 16-bit signed integer.

The number was larger than 32,767, the largest integer storeable in
a 16-bit signed integer, and thus the conversion failed.
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Summary

IEEE Floating Point has Clear Mathematical Properties

Represents numbers of the form ±M × 2E .

Can reason about operations independent of implementation:
as if computed with perfect precision and then rounded.

Not the same as real arithmetic.

Violates associativity and distributivity.
Makes life difficult for compilers and serious numerical
application programmers.
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