
CS429: Computer Organization and Architecture
Instruction Set Architecture

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: October 2, 2019 at 18:05

CS429 Slideset 6: 1 Instruction Set Architecture

Topics of this Slideset

Intro to Assembly language

Programmer visible state

Y86 Rudiments

RISC vs. CISC architectures

CS429 Slideset 6: 2 Instruction Set Architecture

Instruction Set Architecture

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

Application
Program

Compiler OS

CPU Design

Circuit Design

Chip Layout

ISA ISA Layer

Assembly Language View

Processor state: registers,
memory, etc.

Instructions and how
instructions are encoded

Layer of Abstraction

Above: how to program
machine, processor executes
instructions sequentially

Below: What needs to be
built

Use variety of tricks to
make it run faster
E.g., execute multiple
instructions
simultaneously

CS429 Slideset 6: 3 Instruction Set Architecture

Why Y86?

The Y86 is a “toy” machine that is similar to the x86 but much
simpler. It is a gentler introduction to assembly level programming
than the x86.

just a few instructions as opposed
to hundreds for the x86;

fewer addressing modes;

simpler system state;

absolute addressing.

Everything you learn about the Y86 will apply to the x86 with very
little modification. But the main reason we’re bothering with the
Y86 is because we’ll be explaining pipelining in that context.

CS429 Slideset 6: 4 Instruction Set Architecture

Language / Machine Semantics

There are various means of giving a semantics or meaning to a
programming system.

Probably the most sensible for an assembly (or machine) language
is an operational semantics, also known as an interpreter semantics.

That is, we explain the semantics of each possible operation in the
language by explaining the effect that execution of the operation
has on the machine state.

CS429 Slideset 6: 5 Instruction Set Architecture

Fetch / Decode / Execute Cycle

The most fundamental abstraction for the machine semantics for
the x86/Y86 or similar machines is the fetch-decode-execute cycle.
This is also called the von Neumann architecture.

The machine repeats the
following steps forever:

1 fetch the next instruction
from memory (the PC tells
you which is next);

2 decode the instruction (in
the control unit);

3 execute the instruction,
updating the state
appropriately;

4 go to step 1.

CS429 Slideset 6: 6 Instruction Set Architecture

Y86 Processor State

%rax

%rcx

%rdx

%rbx

%rsp

%rbp

%rsi

%rdi

%r8

%r9

%r10

%r11

%r12

%r13

%r14

ZF SFOF

Program
Registers

MemoryCondition
codes

PC Stat

Program registers: almost the same as x86-64, each 64-bits

Condition flags: 1-bit flags set by arithmetic and logical
operations. OF: Overflow, ZF: Zero, SF: Negative

Program counter: indicates address of instruction

Memory

Byte-addressable storage array
Words stored in little-endian byte order

Status code: (status can be AOK, HLT, INS, ADR) to
indicate state of program execution.

CS429 Slideset 6: 7 Instruction Set Architecture

Y86 Instructions

We’re actually describing two languages: the assembly language
and the machine language. There is nearly a 1-1 correspondence
between them.

Machine Language Instructions

1-10 bytes of information read from memory

Can determine instruction length from first byte
Not as many instruction types and simpler encoding than
x86-64

Each instruction accesses and modifies some part(s) of the
program state.

CS429 Slideset 6: 8 Instruction Set Architecture

Y86 Instruction Set

Byte 0 1 2 3 4 5 6 7 8 9

halt 0 0

nop 1 0

cmovXX rA,rB 2 fn rA rB

irmovq V,rB 3 0 F rB V

rmmovq rA,D(rB) 4 0 rA rB D

mrmovq D(rB),rA 5 0 rA rB D

OPq rA,rB 6 fn rA rB

jXX Dest 7 fn Dest

call Dest 8 0 Dest

ret 9 0

pushq rA A 0 rA F

popq rA B 0 rA F

CS429 Slideset 6: 9 Instruction Set Architecture

Example from C to Assembly

Suppose we have the following simple C program in file code.c.

int sumInts (long int n)

{

/* Add the integers from 1..n. */

long int i;

long int sum = 0;

for (i = 1; i <= n; i++) {

sum += i;

}

return sum;

}

We used long int to force usage of the 64-bit registers. You can
generate assembly using the following command:

> gcc -O -S code.c

CS429 Slideset 6: 10 Instruction Set Architecture

x86 Assembly Example

. f i l e ” c o d e . c ”

. t e x t

. g l o b l sumInt s

. t y p e sumInts , @ f u n c t i o n
sumInt s :
.LFB0 :

. c f i s t a r t p r o c
t e s t q %r d i , %r d i
j l e .L4
movq $0 , %rax
movq $1 , %rdx

.L3 :
addq %rdx , %rax
addq $1 , %rdx
cmpq %rdx , %r d i
j g e .L3
r e t

.L4 :
movq $0 , %rax
r e t
. c f i e n d p r o c

.LFE0 :
. s i z e sumInts , .−sumInt s
. i d e n t ”GCC: (Ubuntu 4 . 8 . 4 −2ubuntu1 ˜14 .04) 4 . 8 . 4 ”
. s e c t i o n .note.GNU−s tack , ”” , @ p r o g b i t sCS429 Slideset 6: 11 Instruction Set Architecture

Y86 Assembly Example

This is a hand translation into Y86 assembler:

sumInts :

andq %rdi , %rdi # test %rdi = n

jle .L4 # if <= 0, done

irmovq $1 , %rcx # constant 1

irmovq $0 , %rax # sum = 0

irmovq $1 , %rdx # i = 1

.L3:

rrmovq %rdi , %rsi # temp = n

addq %rdx , %rax # sum + = i

addq %rcx , %rdx # i += 1

subq %rdx , %rsi # temp -= i

jge .L3 # if >= 0, goto L3

ret # else return sum

.L4:

irmovq $0 , %rax # done

ret

How does it get the argument? How does it return the value?

CS429 Slideset 6: 12 Instruction Set Architecture

Encoding Registers

Each register has an associated 4-bit ID:

%rax 0 %r8 8

%rcx 1 %r9 9

%rdx 2 %r10 A

%rbx 3 %r11 B

%rsp 4 %r12 C

%rbp 5 %r13 D

%rsi 6 %r14 E

%rdi 7 no reg F

Almost the same encoding as in x86-64.

Most of these registers are general purpose; %rsp has special
functionality.

CS429 Slideset 6: 13 Instruction Set Architecture

Y86 Instruction Set (2)

cmovXX rA,rB 2 fn rA rB

Encompasses:

rrmovq rA,rB 2 0 move from register to register

cmovle rA,rB 2 1 move if less or equal

cmovl rA,rB 2 2 move if less

cmove rA,rB 2 3 move if equal

cmovne rA,rB 2 4 move if not equal

cmovge rA,rB 2 5 move if greater or equal

cmovg rA,rB 2 6 move if greater

CS429 Slideset 6: 14 Instruction Set Architecture

Y86 Instruction Set (3)

OPq rA,rB 6 fn rA rB

Encompasses:

addq rA,rB 6 0 add

subq rA,rB 6 1 subtract

andq rA,rB 6 2 and

xorq rA,rB 6 3 exclusive or

CS429 Slideset 6: 15 Instruction Set Architecture

Y86 Instruction Set (4)

jXX Dest 7 fn Dest

Encompasses:

jmp Dest 7 0 unconditional jump

jle Dest 7 1 jump if less or equal

jl Dest 7 2 jump if less

je Dest 7 3 jump if equal

jne Dest 7 4 jump if not equal

jge Dest 7 5 jump if greater or equal

jg Dest 7 6 jump if greater

CS429 Slideset 6: 16 Instruction Set Architecture

Simple Addressing Modes

Immediate: value

irmovq $0xab, %rbx

Register: Reg[R]

rrmovq %rcx, %rbx

Normal (R): Mem[Reg[R]]

Register R specifies memory address.
This is often called indirect addressing.

mrmovq (%rcx), %rax

Displacement D(R): Mem[Reg[R]+D]

Register R specifies start of memory region.
Constant displacement D specifies offset

mrmovq 8(%rcb),%rdx

CS429 Slideset 6: 17 Instruction Set Architecture

Conventions

It’s important to understand how individual operations update the
system state. But that’s not enough!

Much of the way the Y86/x86 operates is based on a a set of
programming conventions. Without them, you won’t understand
how programs work, what the compiler generates, or how your
code can interact with code written by others.

CS429 Slideset 6: 18 Instruction Set Architecture

Conventions

The following are conventions necessary to make programs interact:

How do you pass arguments to a procedure?

Where are variables (local, global, static) created?

How does a procedure return a value?

How do procedures preserve the state/data of the caller?

Some of these (e.g., the direction the stack grows) are reflected in
specific machine operations; others are purely conventions.

CS429 Slideset 6: 19 Instruction Set Architecture

Sample Program

Let’s write a fragment of Y86 assembly code. Our program swaps
the 8-byte values starting in memory locations 0x0100 (value A)
and 0x0200 (value B).

start :

xorq %rax , %rax

mrmovq 0x100 (% rax), %rbx

mrmovq 0x200 (% rax), %rcx

rmmovq %rcx , 0x100 (% rax)

rmmovq %rbx , 0x200 (% rax)

halt

Reg. Use

%rax 0
%rbx A
%rcx B

It’s usually a good idea to have a table like
this to keep track of the use of registers.

CS429 Slideset 6: 20 Instruction Set Architecture

Sample Program: Machine Code

Now, we generate the machine code for our sample program.
Assume that it is stored in memory starting at location 0x030. I
did this by hand, so check for errors!

0 x030 : 6300 # xorq %rax , %rax
0 x032 : 50300001000000000000 # mrmovq 0 x100(%rax) , %rbx
0 x03c : 50100002000000000000 # mrmovq 0 x200(%rax) , %r c x
0 x046 : 40100001000000000000 # rmmovq %rcx , 0 x100(%rax)
0 x050 : 40300002000000000000 # rmmovq %rbx , 0 x200(%rax)
0 x05a : 00 # h a l t

Reg. Use

%rax 0
%rbx A
%rcx B

CS429 Slideset 6: 21 Instruction Set Architecture

A Peek Ahead: Argument Passing

Registers: First 6 arguments

1. %rdi

2. %rsi

3. %rdx

4. %rcx

5. %r8

6. %r9

This convention is for GNU/Linux;
Windows is different. Mnemonic to
recall order: “Diane’s silk dress cost
$89.”

Return value

%rax

Stack: arguments 7+

...
Arg n

...
Arg 8
Arg 7 ← %rsp

Push in reverse order.
Only allocate stack space
when needed.

CS429 Slideset 6: 22 Instruction Set Architecture

Instruction Example

Addition Instruction

rBrA6 0

Generic form Encoded representation

addq rA, rB

Add value in register rA to that in register rB.
Store result in register rB
Note that Y86 only allows addition to be applied to register
data.

E.g., addq %rax, %rsi is encoded as: 60 06. Why?

Set condition codes based on the result.
Two byte encoding:

First indicates instruction type.
Second gives source and destination registers.

What effects does addq have on the state?
CS429 Slideset 6: 23 Instruction Set Architecture

Effects on the State

You completely characterize an operation by saying how it changes
the state.

What effects does addq %rsi, %rdi have on the state?

CS429 Slideset 6: 24 Instruction Set Architecture

Effects on the State

You completely characterize an operation by saying how it changes
the state.

What effects does addq %rsi, %rdi have on the state?

1 Set contents of %rdi to the sum of the current contents of
%rsi and %rdi.

2 Set condition codes based on the result of the sum.

OF: set (i.e., is 1) iff the result causes an overflow
ZF: set iff the result is zero
SF: set iff the result is negative

3 Increment the program counter by 2. Why 2?

There is no effect on the memory or status flag.

CS429 Slideset 6: 25 Instruction Set Architecture

Arithmetic and Logical Operations

Add
addq rA, rB 6 0 rA rB

Subtract (rA from rB)
subq rA, rB 6 1 rA rB

And
andq rA, rB 6 2 rA rB

Exclusive Or
xorq rA, rB 6 3 rA rB

Refer to generically as
“OPq”

Encodings differ only by
“function code”: lower-order
4-bits in first instruction
byte.

Set condition codes as side
effect.

CS429 Slideset 6: 26 Instruction Set Architecture

Move Operations

Register to Register
rrmovq rA, rB 2 0 rA rB

Immediate to Register
irmovq V, rB 3 0 F rB V

Register to Memory
rmmovq rA, D(rB) 4 0 rA rB D

Memory to Register
mrmovq D(rB), rA 5 0 rA rB D

Similar to the x86-64 movq instruction.

Similar format for memory addresses.

Slightly different names to distinguish them.

CS429 Slideset 6: 27 Instruction Set Architecture

Move Instruction Examples

x86-64 Y86 Y86 Encoding

movq $0xabcd, %rdx irmovq $0xabcd, %rdx 30 F2 cd ab 00 00 00 00 00 00
movq %rsp, %rbx rrmovq %rsp, %rbx 20 43
movq -12(%rbp), %rcx mrmovq -12(%rbp), %rcx 50 15 f4 ff ff ff ff ff ff ff
movq %rsi, 0x41c(%rsp) rmmovq %rsi, 0x41c(%rsp) 40 64 1c 04 00 00 00 00 00 00

movq %0xabcd, (%rax) none
movq %rax, 12(%rax, %rdx) none
movq (%rbp, %rdx, 4), %rcx none

The Y86 adds special move instructions to compensate for the lack
of certain addressing modes.

CS429 Slideset 6: 28 Instruction Set Architecture

Conditional Move Instructions

Move (conditionally)
cmovXX rA, rB 2 fn rA rB

Refer to generically as “cmovXX”

Encodings differ only by function code fn

rrmovq instruction is a special case

Based on values of condition codes

Conditionally copy value from source to destination register

Note that rrmovq is a special case of cmovXX.

CS429 Slideset 6: 29 Instruction Set Architecture

Conditional Move Instructions

Move Unconditionally
rrmovq rA, rB 2 0 rA rB

Move when less or equal
cmovle rA, rB 2 1 rA rB

Move when less
cmovl rA, rB 2 2 rA rB

Move when equal
cmove rA, rB 2 3 rA rB

Move when not equal
cmovne rA, rB 2 4 rA rB

Move when greater or equal
cmovge rA, rB 2 5 rA rB

Move when greater
cmovg rA, rB 2 6 rA rB

CS429 Slideset 6: 30 Instruction Set Architecture

Example of CMOV

Suppose you want to compile the following C code:

long min (long x, long y) {

if (x <= y)

return x;

else

return y;

}

The following is one potential implementation of this. Notice that
there are no jumps.

min:

rrmovq %rdi , %rax # ans <-- x

rrmovq %rdi , %r8 # temp <-- x

subq %rsi , %r8 # if (temp - y) > 0

cmovg %rsi , %rax # ans <-- y

ret # return ans

CS429 Slideset 6: 31 Instruction Set Architecture

Jump Instructions

Jump (conditionally)
jXX Dest 7 fn Dest

Refer to generically as “jXX”

Encodings differ only by function code fn

Based on values of condition codes

Same as x86-64 counterparts

Encode full destination address (unlike PC-relative addressing
in x86-64)

CS429 Slideset 6: 32 Instruction Set Architecture

Jump Instructions

Jump Unconditionally
jmp Dest 7 0 Dest

Jump when less or equal
jle Dest 7 1 Dest

Jump when less
jl Dest 7 2 Dest

Jump when equal
je Dest 7 3 Dest

Jump when not equal
jne Dest 7 4 Dest

Jump when greater or equal
jge Dest 7 5 Dest

Jump when greater
jg Dest 7 6 Dest

CS429 Slideset 6: 33 Instruction Set Architecture

Jump Example

Suppose you want to count the number of elements in a null
terminated list A with starting address in %rdi.

len:

irmovq $0 , %rax # result = 0

mrmovq (% rdi), %rdx # val = *A

andq %rdx , %rdx # Test val

je Done # If 0, goto

Done

Loop:

....

Done:

ret

CS429 Slideset 6: 34 Instruction Set Architecture

Y86 Program Stack

...

Stack "top"

Stack "bottom"

Increasing
Addresses

%rsp

Region of memory holding program
data.

Used in Y86 (and x86-64) for
supporting procedure calls.

Stack top is indicated by %rsp ,
address of top stack element.

Stack grows toward lower
addresses.

Top element is at lowest address
in the stack.
When pushing, must first
decrement stack pointer.
When popping, increment stack
pointer.

CS429 Slideset 6: 35 Instruction Set Architecture

Stack Operations

Push
pushq rA a 0 rA F

Decrement %rsp by 8.

Store quad word from rA to memory at %rsp .

Similar to x86-64 pushq operation.

Pop
popq rA b 0 rA F

Read quad word from memory at %rsp.

Save in rA.

Increment %rsp by 8.

Similar to x86-64 popq operation.

CS429 Slideset 6: 36 Instruction Set Architecture

Subroutine Call and Return

Subroutine call
call Dest 8 0 Dest

Push address of next instruction onto stack.

Start executing instructions at Dest.

Similar to x86-64 call instruction.

Subroutine return
ret 9 0

Pop value from stack.

Use as address for next instruction.

Similar to x86-64 ret instruction.

Note that call and ret don’t implement parameter/return passing.
You have to do that in your code.

CS429 Slideset 6: 37 Instruction Set Architecture

Miscellaneous Instructions

No operation
nop 1 0

Don’t do anything but advance PC.

Halt execution
halt 0 0

Stop executing instructions; set status to HLT.

x86-64 has a comparable instruction, but you can’t execute it
in user mode.

We will use it to stop the simulator.

Encoding ensures that program hitting memory initialized to
zero will halt.

CS429 Slideset 6: 38 Instruction Set Architecture

Status Conditions

Mnemonic Code Meaning

AOK 1 Normal operation
HLT 2 Halt inst. encountered
ADR 3 Bad address (instr. or data)
INS 4 Invalid instruction

Desired behavior:

If AOK, keep executing

Otherwise, stop program execution

CS429 Slideset 6: 39 Instruction Set Architecture

Writing Y86 Code

Try to use the C compiler as much as possible.

Write code in C.

Compile for x86-64 with gcc -Og -S.

Transliterate into Y86 code.

Modern compilers make this more difficult, because they
optimize by default.

To understand Y86 (or x86) code, you have to know the meaning
of the statement, but also certain programming conventions,
especially the stack discipline.

How do you pass arguments to a procedure?

Where are local variables created?

How does a procedure return a value?

How do procedures save and restore the state of the caller?

CS429 Slideset 6: 40 Instruction Set Architecture

Writing Y86 Code: Example

Coding example: Find number of elements in a null-terminated
list.

long len(long a[]);

5043

6125

7395

0

a

The answer in this case should be 3.

CS429 Slideset 6: 41 Instruction Set Architecture

Y86-64 Code Generation Example

First try writing typical array
code:

/* Count elements in null -

terminated list */

long len(long a[])

{

long length ;

for (length = 0; a[

length]; length ++);

return length ;

}

Compile with gcc -Og -S

Problem: Hard to do array
indexing on Y86, since we don’t
have scaled addressing modes.

x86 Code:

L3:

addq $1 , %rax

cmpq $0 , (%rdi ,%rax ,8)

jne L3

CS429 Slideset 6: 42 Instruction Set Architecture

Y86-64 Code Generation Example (2)

Second try: Write C code that mimics
expected Y86 code.

/* Count elements in null -

terminated list */

long len2(long *a)

{

long ip = (long) a;

long val = *(long *) ip;

long len = 0;

while (val) {

ip += sizeof(long);

len ++;

val = *(long *) ip;

}

return len;

}

Result:

Compiler generates
exact same code as
before!

Compiler converts
both versions into the
same intermediate
form.

CS429 Slideset 6: 43 Instruction Set Architecture

Y86-64 Code Generation Example (3)

len:

irmovq $1 , %r8 # Constant 1

irmovq $8 , %r9 # Constant 8

irmovq $0 , %rax # len = 0

mrmovq (% rdi), %rdx # val = *a

andq %rdx , %rdx # Test val

je Done # If 0, goto

Done

Loop:

addq %r8 , %rax # len ++

addq %r9 , %rdi # a++

mrmovq (% rdi), %rdx # val = *a

andq %rdx , %rdx # Test val

jne Loop # If !0, goto

Loop

Done:

ret

Reg. Use

%rdi a
%rax len
%rdx val
%r8 1
%r9 8

CS429 Slideset 6: 44 Instruction Set Architecture

Y86 Sample Program Structure

init: # Initialization

...

call Main

halt

. align 8 # Program data

Array :

...

Main: # Main function

...

call len

...

len: # Length function

...

.pos 0x100 # Place stack

Stack :

Program starts at
address 0

Must set up stack

Where located
Pointer values
Mustn’t overwrite
data

Must initialize data

CS429 Slideset 6: 45 Instruction Set Architecture

Y86 Program Structure (2)

init:

Set up stack pointer

irmovq Stack , %rsp

Execute main program

call Main

Terminate

halt

Array of 4 elements + final 0

.align 8

Array :

.quad 0 x000d000d000d000d

.quad 0 x00c000c000c000c0

.quad 0 x0b000b000b000b00

.quad 0 xa000a000a000a000

.quad 0

Program starts at
address 0

Must set up stack

Must initialize data

Can use symbolic
names

CS429 Slideset 6: 46 Instruction Set Architecture

Y86 Program Structure (3)

Main:

irmovq Array , %rdi

call len(Array)

call len

ret

Set up call to len:

Follow x86-64 procedure conventions

Pass array address as argument

CS429 Slideset 6: 47 Instruction Set Architecture

Y86 Assembler

A program that translates Y86 code into machine language.

1-1 mapping of instructions to encodings.

Resolves symbolic names.

Translation is linear.

Assembler directives give additional control.

Some common directives:

.pos x: subsequent lines of code start at address x.

.align x: align the next line to an x-byte boundary (e.g.,
long ints should be at a quadword address, divisible by 8).

.quad x: put an 8-byte value x at the current address; a way
to initialize a value.

CS429 Slideset 6: 48 Instruction Set Architecture

Assembling Y86 Program

unix > yas len.ys

Generates “object code” file len.yo

Actually looks like disassembler output

0x054: | len:

0x054: 30 f80100000000000000 | irmovq $1 , %r8

0x05e: 30 f90800000000000000 | irmovq $8 , %r9

0x068: 30 f00000000000000000 | irmovq $0 , %rax

0x072: 50270000000000000000 | mrmovq (% rdi), %rdx

0x07c: 6222 | andq %rdx , %rdx

0x07e: 73 a000000000000000 | je Done

0x087: | Loop:

0x087: 6080 | addq %r8 , %rax

0x089: 6097 | addq %r9 , %rdi

0x08b: 50270000000000000000 | mrmovq (% rdi), %rdx

0x095: 6222 | andq %rdx , %rdx

0x097: 748700000000000000 | jne Loop

0x0a0: | Done:

0x0a0: 90 | ret

CS429 Slideset 6: 49 Instruction Set Architecture

Simulating Y86 Programs

unix > yis len.yo

Instruction set simulator

Computes effect of each instruction on process state

Prints changes in state from original

Stopped in 33 steps at PC = 0x13 , Status ’HLT ’, CC Z=1

S=0 O=0

Changes to registers :

%rax: 0 x0000000000000000 0 x0000000000000004

%rsp: 0 x0000000000000000 0 x0000000000000100

%rdi: 0 x0000000000000000 0 x0000000000000038

%r8: 0 x0000000000000000 0 x0000000000000001

%r9: 0 x0000000000000000 0 x0000000000000008

Changes to memory :

0x00f0 : 0 x0000000000000000 0 x0000000000000053

0x00f8 : 0 x0000000000000000 0 x0000000000000013

CS429 Slideset 6: 50 Instruction Set Architecture

CISC Instruction Sets

Complex Instruction Set Computer

Dominant ISA style through the 80s.

Lots of instructions:

Variable length
Stack as mechanism for supporting functions
Explicit push and pop instructions.

ALU instructions can access memory.

E.g., addq %rax, 12(%rbx, %rcx, 8)

Requires memory read and write in one instruction execution.
Some ISAs had much more complex address calculations.

Set condition codes as a side effect of other instructions.

Basic philosophy:

Memory is expensive;
Instructions to support high-level language constructs.

CS429 Slideset 6: 51 Instruction Set Architecture

RISC Instruction Sets

Reduced Instruction Set Computer

Originated in IBM Research; popularized in Berkeley and
Stanford projects.

Few, simple instructions.

Takes more instructions to execute a task, but faster and
simpler implementation
Fixed length instructions for simpler decoding

Register-oriented ISA

More registers (32 typically)
Stack is back-up for registers

Only load and store instructions can access memory (mrmovq
and rmmovq in Y86).

Explicit test instructions set condition values in register.

Philosophy: KISS

CS429 Slideset 6: 52 Instruction Set Architecture

CISC vs. RISC

Original Debate

Strong opinions!

CISC proponents–easy for compiler, fewer code bytes

RISC proponents–better for optimizing compilers, can make
run fast with simple chip design

Current Status

For desktop processors, choice of ISA not a technical issue

With enough hardware, can make anything run fast
Code compatibility more important

x86-64 adopted many RISC features

More registers; use them for argument passing

For embedded processors, RISC makes sense

Smaller, cheaper, less power
Most cell phones use ARM processor

CS429 Slideset 6: 53 Instruction Set Architecture

Summary

Y86-64 Instruction Set Architecture

Similar state and instructions to x86-64

Simpler encodings

Somewhere between CISC and RISC

How Important is ISA Design?

Less now than before: with enough hardware, can make
almost anything run fast!

CS429 Slideset 6: 54 Instruction Set Architecture

