Controlling Program Execution

- We can now generate programs that execute linear sequences of instructions
 - Access registers and storage
 - Perform computations
- But what about loops, conditions, etc.?
- Need ISA support for:
 - Comparing and testing data values
 - Directing program control
 - Jump to some instruction that isn’t just the next one in sequence
 - Do so based on some condition that has been tested.

Processor State (x86-64, Partial)

Information about currently executing program.

- Temporary data (%rax, ...
- Location of runtime stack (%rsp)
- Location of current code control point (%rip)
- Status of recent tests (ZF, SF, OF)
- Status of recent tests (CF, ZF, SF, OF)

Don’t use %rip as a general purpose register.

However, the compiler may generate **PC-relative addressing**.

```
jmp 0x10(%rip)
```

The effective address for a PC-relative instruction address is the offset parameter added to the address of the next instruction. This offset is signed to allow reference to code both before and after the instruction.

Can you guess why the compiler might generate such code?
Condition Codes (Implicit Setting)

Single bit registers
- CF: carry flag (for unsigned)
- ZF: zero flag
- SF: sign flag (for signed)
- OF: overflow flag (for signed)

Implicitly set by arithmetic operations

E.g., addq Src, Dest

C analog: \(t = a + b; \)
- CF set if carry out from most significant bit (unsigned overflow)
- ZF set if \(t == 0 \)
- SF set if \(t < 0 \) (as signed)
- OF set if two’s complement overflow:
 \((a>0 && b>0 && (a-b)<0) || (a<0 && b<0 && (a-b)>=0)\)

Condition codes not set by lea instruction.

Setting Condition Codes: Test Instruction

Explicitly set by Test instruction

testq Src2, Src1

- Sets condition codes based on value of (Src1 & Src2).
- Often useful to have one of the operands be a mask.
- testq b, a is like computing a\&b, without setting a destination.
- ZF set iff \((a & b) == 0\)
- SF set iff \((a & b) < 0\)
- CF and OF are set to 0.

How could you use testq to jump if the value in %rbx is even?

Explicitly set by Compare instruction
cmpq Src2, Src1

- cmpq b, a is like computing \(a - b \) without setting destination.
- CF set if carry out from most significant bit; used for unsigned computations.
- ZF set if \(a == b \)
- SF set if \((a-b) < 0\)
- OF set if two’s complement (signed) overflow:
 \((a>0 && b>0 && (a-b)<0) || (a<0 && b<0 && (a-b)>=0)\)

SetX Instructions: Set low order bytes of destination to 0 or 1, based on combinations of condition codes.

Does not alter remaining 7 bytes.

<table>
<thead>
<tr>
<th>SetX</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sete</td>
<td>ZF</td>
<td>Equal / Zero</td>
</tr>
<tr>
<td>setne</td>
<td>~ZF</td>
<td>Not equal / not zero</td>
</tr>
<tr>
<td>sets</td>
<td>SF</td>
<td>Negative</td>
</tr>
<tr>
<td>setsn</td>
<td>~SF</td>
<td>Nonnegative</td>
</tr>
<tr>
<td>setg</td>
<td>~SF&~OF&~ZF</td>
<td>Greater (signed)</td>
</tr>
<tr>
<td>setge</td>
<td>~SF&~OF</td>
<td>Greater or equal (signed)</td>
</tr>
<tr>
<td>setl</td>
<td>(SF&OF)</td>
<td>Less (signed)</td>
</tr>
<tr>
<td>setle</td>
<td>(SF&OF)</td>
<td>Less or equal (signed)</td>
</tr>
<tr>
<td>seta</td>
<td>~CF&~ZF</td>
<td>Above (unsigned)</td>
</tr>
<tr>
<td>setb</td>
<td>CF</td>
<td>Below (unsigned)</td>
</tr>
</tbody>
</table>
x86-64 Registers: Least Significant Byte

Can reference the low-order byte.

<table>
<thead>
<tr>
<th>Register</th>
<th>Use(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%rax</td>
<td>return value</td>
</tr>
<tr>
<td>%rsi</td>
<td>Argument y</td>
</tr>
<tr>
<td>%rdi</td>
<td>Argument x</td>
</tr>
</tbody>
</table>

SetX instructions
- Set single byte based on combinations of conditions codes.
- Argument is one of addressable byte registers.
- does not alter remaining bytes;
- typically use movzb1 to finish the job (will also zero 4 high order bytes).

```c
int gt(long x, long y) {
    return x > y;
}
```

Conditional Branch Example (Old Style)

jX Instructions: Jump to different parts of the code depending on condition codes.

<table>
<thead>
<tr>
<th>jX</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>jmp</td>
<td>1</td>
<td>Unconditional</td>
</tr>
<tr>
<td>je</td>
<td>ZF</td>
<td>Equal / Zero</td>
</tr>
<tr>
<td>jne</td>
<td>~ZF</td>
<td>Not equal / not zero</td>
</tr>
<tr>
<td>js</td>
<td>SF</td>
<td>Negative</td>
</tr>
<tr>
<td>jns</td>
<td>~SF</td>
<td>Nonnegative</td>
</tr>
<tr>
<td>jg</td>
<td>(SF~OF)&~ZF</td>
<td>Greater (signed)</td>
</tr>
<tr>
<td>jge</td>
<td>(SF~OF)</td>
<td>Greater or equal (signed)</td>
</tr>
<tr>
<td>jl</td>
<td>(SF~OF)</td>
<td>Less (signed)</td>
</tr>
<tr>
<td>jle</td>
<td>(SF~OF)</td>
<td>ZF</td>
</tr>
<tr>
<td>ja</td>
<td>~CF&~ZF</td>
<td>Above (unsigned)</td>
</tr>
<tr>
<td>jb</td>
<td>CF</td>
<td>Below (unsigned)</td>
</tr>
</tbody>
</table>

```c
long absdiff (long x, long y) {
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}
```

Jumping

Jumping

```
cmpq %rsi, %rdi  # compare x:y
setg %al        # Set if >
movzb1 %al, %eax # Zero rest of %rax
retq
```
Converting C into Assembly

Machine Models

![Machine Models Diagram]

- C
- Memory
- Processor
- ALU
- Regs
- Stack
- Memory
- Processor
- ALU
- Regs
- Stack

Data
1) char
2) int, float
3) double
4) struct, array
5) pointer

Control
1) loops
2) conditionals
3) switch
4) proc. call
5) proc. return

A common compilation strategy is to take a C construct and rewrite it into an equivalent C version that is closer to assembly, as an intermediate step toward assembly.

Expressing with Goto Code

- C allows “goto” as a means of transferring control.
- Jump to position designated by label.
- Generally considered bad coding style in high level language.

```c
long absdiff_j (long x, long y)
{
        long result;
        int ntest = x <= y;
        if (ntest) goto Else;
        result = x - y;
Else:
        result = y - x;
return result;
}
```

General Condition Expression Translation

C Code:

```c
val = Test ? Then_EXPR : Else_EXPR;
```

Example:

```c
val = x > y ? x - y : y - x;
```

Goto Version:

```c
ntest = !Test
if (ntest) goto Else;
val = Then_EXPR;
goto Done;
Else:
val = Else_EXPR;
Done:
...
```

Conditional Move Instructions

- Refer to generically as “cmovXX”
- Based on values of condition codes
- Conditionally copy value from source to destination.
- Can be used to eliminate conditional jump.

- Create separate code regions for then and else expressions.
- Execute the appropriate one.
Conditional Move Instructions

<table>
<thead>
<tr>
<th>Inst.</th>
<th>Synonym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmove</td>
<td>cmovz</td>
<td>Equal / zero</td>
</tr>
<tr>
<td>cmovne</td>
<td>cmovnz</td>
<td>Not equal / not zero</td>
</tr>
<tr>
<td>cmovs</td>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>cmovns</td>
<td></td>
<td>Not negative</td>
</tr>
<tr>
<td>cmovg</td>
<td>cmovnle</td>
<td>Greater (signed)</td>
</tr>
<tr>
<td>cmovge</td>
<td>cmovnl</td>
<td>Greater or equal (signed)</td>
</tr>
<tr>
<td>cmovl</td>
<td>cmovnge</td>
<td>Less (signed)</td>
</tr>
<tr>
<td>cmovle</td>
<td>cmovng</td>
<td>Less or equal (signed)</td>
</tr>
<tr>
<td>cmova</td>
<td>cmovnbe</td>
<td>Above (unsigned)</td>
</tr>
<tr>
<td>cmovae</td>
<td>cmovnb</td>
<td>Above or equal (unsigned)</td>
</tr>
<tr>
<td>cmovb</td>
<td>cmovnae</td>
<td>Below (unsigned)</td>
</tr>
<tr>
<td>cmovbe</td>
<td>cmovna</td>
<td>Below or equal (unsigned)</td>
</tr>
</tbody>
</table>

Instruction supports:
- `if (Test) Dest ← Src`
- Supported in post-1995 x86 processors
- GCC tries to use them, but only when safe

Why?
- Branches are very disruptive to instruction flow through pipelines.
- Conditional moves do not require control transfer.

Using Conditional Moves

```c
val = Test ? Then_Expr : Else_Expr
```

C Code

```c
Goto Version
result = Then_Expr;
eval = Else_Expr;
n = !Test;
if (nt) result = eval;
return result;
```

Conditional Move Example

```c
long absdiff (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}
```

Bad Cases for Conditional Move

Expensive Computations:

```c
val = Test(x) ? Hard1(x) : Hard2(x);
```
- Both values get computed
- Only makes sense when computations are very simple

Risky Computations:

```c
val = p ? *p : 0;
```
- Both values get computed
- May have undesirable side effects.

Computations with Side Effects:

```c
val = x > 0 ? x *= 7 : x += 3;
```
- Both values get computed
- Must be side effect free
Do-While Loop Example

Following our strategy of rewriting a C construct into a semantically equivalent C version that is closer to assembly.

C Code:

```c
long pcoun t_do
(unsigned long x) {
    long result = 0;
    do {
        result += x & 0x1;
        x >>= 1;
    } while (x);
    return result;
}
```

Goto Version:

```c
long pcoun t_goto
(unsigned long x) {
    loop:
    result += x & 0x1;
    x >>= 1;
    if (x) goto loop;
    return result;
}
```

- Count number of 1's in argument x ("popcount")
- Use conditional branch to either continue looping or to exit loop

General Do-While Translation

C Code:

```c
do
Body
while (Test):
```

Goto Version:

```
loop:
    Body
    if (Test)
        goto loop;
```

- Body can be any C statement, typically is a compound statement.
- Test is an expression returning an integer.
 - If it evaluates to 0, that's interpreted as false.
 - If it evaluates to anything but 0, that's interpreted as true.

General While Translation #1

```
while (Test)
    Body
```

- "Jump-to-middle" translation
- Used with -Og

Goto version

```
goto test;
loop:
    Body
    test:
        if (Test)
            goto loop;
    done:
```
While Loop Example #1

C Code

```c
long pcount_while (unsigned long s) {
    long result = 0;
    while (x) {
        result += x & 0x1;
        x >>= 1;
    }
    return result;
}
```

- Compare to do-while version of function
- Initial goto starts loop at test

Jump to Middle

C Code

```c
long pcount_goto_jtm (unsigned long x) {
    long result = 0;
    goto test;
    loop:
        result += x & 0x1;
        x >>= 1;
    test:
        if (x) goto loop;
        return result;
}
```

General While Translation

- Which gets compiled as if it were:

Goto Version

```c
if (!Test)
    goto done;
loop:
    Body
    if (Test) goto loop;
done:
```

- Are all three versions semantically equivalent?

While Loop Example #2

C Code

```c
long pcount_while (unsigned long x) {
    long result = 0;
    if (!x) goto done;
    loop:
        result += x & 0x1;
        x >>= 1;
    if (x) goto loop;
    done:
        return result;
}
```

- Compare to do-while version of function
- Initial conditional guards entrance to loop

Do-While version

C Code

```c
for (long pcount_for (unsigned long x) {
    long result = 0;
    for (i=0; i<WSIZE; i++)
    {
        unsigned bit = (x >> i) & 0x1;
        result += bit;
    }
    return result;
}
```

- General Form

```c
for (Init; Test; Update)
    Body
```

- Init
  ```c
  i = 0
  ```

- Test
  ```c
  i < WSIZE
  ```

- Update
  ```c
  i++
  ```

- Body
  ```c
  {
      unsigned bit = (x >> i) & 0x1;
      result += bit;
  }
  ```
For Loop to While Loop

For version

```c
for (Init; Test; Update)
    Body
```

translates to:

While version

```c
Init;
while (Test) {
    Body;
    Update;
}
```

For Loop Do-While Conversion

C Code: Goto version

```c
long pcount_for_goto_dw
( unsigned long x )
{
    size_t i;
    long result = 0;
    i = 0;
    if (!(i < WSIZE)) # drop
go to done; # drop
loop:
    unsigned bit =
        (x >> i) & 0x1;
    result += bit;
    i++;
    if (i < WSIZE)
go to loop;
    done:
    return result;
}
```

Note that the initial test is not needed. Why?

For-While Conversion Example

Init

```c
i = 0
```

Test

```c
i < WSIZE
```

Update

```c
i++
```

Body

```c
{ unsigned bit =
    (x >> i) & 0x1;
    result += bit;
}
```

Switch Statement Example

C Code: Switch version

```c
long switch.eq
( long x, long y, long z )
{
    long w = 1;
    switch (x) {
    case 1:
        w = y*z;
        break;
    case 2:
        w = y/z;
        /* Fall through */
    case 3:
        w += z;
        break;
    case 5:
    case 6:
        w -= z;
        break;
    default:
        w = 2;
    }
    return w;
}
```

- Multiple case labels (e.g., 5, 6)
- Fall through cases (e.g., 2)
- Missing cases (e.g., 4)
Jump Table Structure

Switch Form

```c
switch(x) {
    case val_0:
        Block 0
    case val_1:
        Block 1
    ...
    case val_n-1:
        Block n-1
}
```

Translation (Extended C)

```c
goto *JTab[x];
```

Jump Table

<table>
<thead>
<tr>
<th>JTab:</th>
<th>Targ0</th>
<th>Targ1</th>
<th>Targ2</th>
<th>...</th>
<th>Targn-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Code</td>
<td>Code</td>
<td>Code</td>
<td></td>
<td>Code</td>
</tr>
<tr>
<td></td>
<td>Block</td>
<td>Block</td>
<td>Block</td>
<td></td>
<td>Block</td>
</tr>
</tbody>
</table>

Jump Targets

<table>
<thead>
<tr>
<th>Targ0:</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Block</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Targ1:</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Block</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Targ2:</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Block</td>
</tr>
</tbody>
</table>

| ... | |

<table>
<thead>
<tr>
<th>Targn-1:</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Block</td>
</tr>
</tbody>
</table>

Translation (Extended C)

```c
goto *JTab[x];
```

Switch Example

```c
long switch_eq( long x, long y, long z )
{
    long w = 1;
    switch(x) {
        ...
    }
    return w;
}
```

Setup:

```c
switch_eq:
    movq  %rdx, %rcx
    cmpq  $6, %rdi       # x:6
    ja    .L8
    jmp   *.L4(, %rdi, 8)
```

Register Use(s)

<table>
<thead>
<tr>
<th>Register</th>
<th>Use(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%rdi</td>
<td>Argument x</td>
</tr>
<tr>
<td>%rsi</td>
<td>Argument y</td>
</tr>
<tr>
<td>%rdx</td>
<td>Argument z</td>
</tr>
<tr>
<td>%rax</td>
<td>return value</td>
</tr>
</tbody>
</table>

Note that w is not initialized here.

Switch Statement Example

```c
long switch_eq( long x, long y, long z )
{
    long w = 1;
    switch(x) {
        ...
    }
    return w;
}
```

Jump table

```asm
.section .rodata
.align 8
.L4:
    .quad .L8 # x = 0
    .quad .L3 # x = 1
    .quad .L5 # x = 2
    .quad .L9 # x = 3
    .quad .L8 # x = 4
    .quad .L7 # x = 5
    .quad .L7 # x = 6
```

Setup:

```asm
switch_eq:
    movq  %rdx, %rcx
    cmpq  $6, %rdi       # x:6
    ja    .L8
    jmp   *.L4(, %rdi, 8)
```

Table Structure

- Each target requires 8 bytes
- Base address at .L4

Jumping

- Direct: jmp .L8
- Jump target is denoted by label .L8
- Indirect:
 - jmp *.L4(, %rdi, 8)
- Start of jump table: .L4
- Must scale by factor of 8 (addresses are 8 bytes)
- Fetch target from effective address (.L4 + x*8), but only for 0 ≤ x ≤ 6

Assembly Setup Explanation

```asm
.section .rodata
.align 8
.L4:
    .quad .L8 # x = 0
    .quad .L3 # x = 1
    .quad .L5 # x = 2
    .quad .L9 # x = 3
    .quad .L8 # x = 4
    .quad .L7 # x = 5
    .quad .L7 # x = 6
```

Setup:

```asm
switch_eq:
    movq  %rdx, %rcx
    cmpq  $6, %rdi       # x:6
    ja    .L8
    jmp   *.L4(, %rdi, 8)
```
Jump Table:

```
.long switch_eq
  (long x, long y, long z)
{
  long w = 1;
  switch (x) {
    case 1:
      w = y*z;
      break;
    case 2:
      w = y/z;
      /* Fall through */
      case 3:
      case 6:
      w += z;
      break;
    default:
      w = 2;
    }
  return w;
}
```

Handling Fall-Through

```
.long w = 1;
...
switch (x) {
  ...
  case 2:
    w = y/z;
    goto merge;
  ...
  case 3:
    w += z;
    break;
  ...
}
```

Code Blocks (x == 1)

```
switch (x) {
  case 1:  // .L3
    w = y*z;
    break;
  ...
}
```

```
.L3:
  movq %rsi, %rax # y
  imulq %rdx, %rax # y*z
  retq
```

```
Register | Use(s)
---|---
%rdi | Argument x
%rsi | Argument y
%rdx | Argument z
%rax | return value
```

Code Blocks (x == 2, x == 3)

```
.long w = 1;
...
switch (x) {
  ...
  case 2:
    w = y/z;
    goto merge;
  ...
  case 3:
    w += z;
    break;
  ...
}
```

```
.L5:
  #Case 2
  movq %rsi, %rax
  cqto
  idivq %rcx # y/z
  jmp .L6 # goto merge
.L9:
  #Case 3
  movl $1, %eax # w = 1
  .L6:
  # merge:
  addq %rcx, %rax # w += z
  retq
```

```
Register | Use(s)
---|---
%rdi | Argument x
%rsi | Argument y
%rdx | Argument z
%rax | return value
```
Suppose you have a set of switch labels that are “sparse” (widely separated).

In this case, it doesn’t make sense to use a jump table.
- If there are only a few labels, simply use a nested if structure.
- If there are many, build a balanced binary search tree.

The compiler decides the appropriate thresholds for what’s “sparse,” what are “a few,” etc.