Y86 programmer-visible state

Y86 is an assembly language instruction set simpler than but
similar to 1A32; but not as compact (as we will see)

The Y86 has:
@ 8 32-bit registers with the same names as the 1A32 32-bit registers
& 3 condition codes: ZF, SF, OF
» no carry flag - interpret integers as signed
& a program counter (PC)
» Holds the address of the instruction currently being executed
& a program status byte: AOK, HLT, ADR, INS
» State of program execution
& memory: up to 4 GB to hold program and data (4096 = 2212)

RF: Program registers CC: Condition Stat: Program Status
. -] codes
%eax %esi
ZF | SF | OF
secx tedi DMEM: Memory
. . PC
sedx sesp
sebx %ebp

Looking ahead and comparing

Y86 is:

& Little endian

¢ Load/store
» Can only access memory on read/write
» On move statements in Y86

& Combination of CISC and RISC
& Word = 4 bytes

|A32 Is:

& Little endian

NOT load/store

CISC

Byte (1 byte), word (2 bytes), long (4 bytes)

VK

Y86 Instructions

Each accesses and modifies some part(s) of the program
state

Largely a subset of the IA32 instruction set

& Includes only 4-byte integer operations = “word”
& Has fewer addressing modes

& Smaller set of operations

Format

& 1-6 bytes of information read from memory
» Can determine the type of instruction from first byte
» Can determine instruction length from first byte
» Not as many instruction types
» Simpler encoding than with 1A32
Registers
& rA or rB represent one of the registers (0-7)
& OxF denotes no register (when needed)
& No partial register options (must be a byte)

Move operation

Different opcodes for 4 types of moves

/\,/

/\‘,/
/\‘,/
/\‘,/

register to register (opcode = 2)

» Notice conditional move has opcode 2 as well

immediate to register (opcode = 3)
register to memory (opcode = 4)
memory to register (opcode = 5)

movl $0xabed, (8sax)

movl Beax, 12 (%eax, fedx)

movl (%ebp,feax,d) 8ecx

The only memory addressing mode is base register + displacement
Memory operations always move 4 bytes (no byte or word

memory operations i.e. no 8/16-bit move)
Source or destination of memory move must be a register.

1A32 Y86 Encoding

movl $0xabed, %edx irmovl $0xabed, %edx 30 7182 cd ab 00 00
movl %esp, %ebx rrmovl %¥esp, %ebx 2?/43

movl -12 (8ebp) ,%ecx mrmovl -12 (%ebp) ,%ecx %0 15 £f4 f£ff f£ff £f
movl %esi,0xdlc (Besp) rmmovl %esi,0x4lc(%esp)/ 40 64 1lc 04 00 0O

CORRECTION =F

Move operation (cont)

Instruction ____|Effect ___________|Descripton _________

irmovl V,R Reg[R] « V Immediate-to-register move
rrmovl rA,rB Reg[rB] < Reg[rA] Register-to-register move
rmmovl rA,D (rB) Mem[Reg[rB]+D] < Reg[rA] Register-to-memory move

mrmovl D(rA) ,rB Reg[rB] < Mem[Reg[rA]l+D] Memory-to-register move

 irmovl is used to place known numeric values (labels
or numeric literals) into registers

 rrmovl copies a value between registers
 rmmovl stores a word in memory
 mrmovl |loads a word from memory

 rmmovl and mrmovl are the only instructions that
access memory - Y86 is a load/store architecture

368

Supported OPs and Jump

OP1 (opcode = 6)

& Only take registers as operands fn | operation
& Only work on 32 bits 0 addl
& Note: no “or” and “not” ops
& Only instructions to set CC 1 subl
= Jump instructions (opcode = 7) 5 andl
fn = 0 for unconditional jump
fn=l-6ifoTe <= us. == S=5> 3 xorl

Refer to generically as “JXX”

Encodings differ only by “function code”
Based on values of condition codes
Same as IA32 counterparts

Encode full destination address
» Unlike PC-relative addressing seen in IA32

VOO OOR

Conditional move

Move Unconditionally

rrmovl rA, rB 2 rA|rB |
Move When Less or Equal

cmovle rA, rB 2| 1|rA|IB |
Move When Less

cmovl rA, rB 2|2 |rA|rB |
Move When Equal

cmove A, rB 2 rA|rB |
Move When Not Equal

cmovne rA, rB 2|4 |rA|IB |
Move When Greater or Equal

cmovge A, rB 2|5 |rA|rB |
Move When Greater

cmovg A, rB z2 rA|rB |

Refer to generically
as “cmovXX”
Encodings differ
only by “function
code”

Based on values of
condition codes
Variants of rrmovl

Instruction

2 (conditionally)
copy value from
source to
destination
register

Stack Operations

pushl rA A|O|rA|F | =
= Stack
m Decrement 3esp by 4 for Y86
m Store word from rA to memory at gesp works
m Like IA32 .
just the
popl rA B|O|rA|lF | same as
with
m Read word from memory at 3esp |A32
m Save inrA
m Increment 3esp by 4
m Like IA32

Subroutine call and return

call Dest 8|0 Dest |

m Push address of next instruction onto stack

m Like |IA32

Note: call uses absolute addressing

ret 9|0

m Pop value from stack
m Use as address for next instruction
m Like |IA32

Miscellaneous instructions

nop 1|0

m Don’t do anything

halt 0|0 |

m Stop executing instructions

m |A32 has comparable instruction, but can’t execute it in
user mode

m We will use it to stop the simulator

m Encoding ensures that program hitting memory
initialized to zero will halt

Status conditions

[T = Normal operation
AOK 1
m m Halt instruction encountered
HLT 2
m m Bad address (either instruction or data)
ors encountered
ADR 3
DI A = Invalid instruction encountered
INS 4

Desired Behavior

m [f AOK, keep going
m Otherwise, stop program execution

Instruction encoding practice

Determine the byte encoding of the following Y86 instruction
sequence given “.pos 0x100” specifies the starting address of the
object code to be 0x100 (practice problem 4.1)

.pos 0x100 # start code at address 0x100

irmovl S15, %ebx # load 15 into %ebx
rrmov| %ebx, %ecx # copy 15 to %ecx
loop:
rmmovl %ecx, -3(%ebx) # save %ecx at addr 15-3=12
add| %ebx, %ecx # increment %ecx by 15

jmp loop # goto loop

Instruction encoding practice (cont)

= 0x100: 30f3fctfffff 406300080000 00
0x100: 30f3fcffffff irmovl S-4, %ebx

0x106: 406300080000 rmmov! %esi, 0x800(%ebx)
0x10c: 00 halt

Now you try:

0x200: a06f 80080200000030f30a00000090
0x400: 6113730004000000

Important property of any instruction set

THE BYTE ENCODINGS MUST HAVE A UNIQUE
INTERPRETATION
which

ENSURES THAT A PRCESSOR CAN EXECUTE
AN OBJECT-CODE PROGRAM WITHOUT ANY
AMBIGUITY ABOUT THE MEANING OF THE
CODE

377

