
Y86 programmer-visible state

Y86 is an assembly language instruction set simpler than but
similar to IA32; but not as compact (as we will see)
The Y86 has:

8 32-bit registers with the same names as the IA32 32-bit registers
3 condition codes: ZF, SF, OF
 no carry flag - interpret integers as signed
a program counter (PC)
 Holds the address of the instruction currently being executed
a program status byte: AOK, HLT, ADR, INS
 State of program execution
memory: up to 4 GB to hold program and data (4096 = 2^12)

364

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

RF: Program registers

ZF SF OF

CC: Condition

codes

PC

DMEM: Memory

Stat: Program Status

Looking ahead and comparing

Y86 is:
Little endian
Load/store
 Can only access memory on read/write
 On move statements in Y86
Combination of CISC and RISC
Word = 4 bytes

IA32 is:
Little endian
NOT load/store
CISC
Byte (1 byte), word (2 bytes), long (4 bytes)

365

Y86 Instructions

Each accesses and modifies some part(s) of the program
state
Largely a subset of the IA32 instruction set

Includes only 4-byte integer operations  “word”
Has fewer addressing modes
Smaller set of operations

Format
1–6 bytes of information read from memory
 Can determine the type of instruction from first byte
 Can determine instruction length from first byte
 Not as many instruction types
 Simpler encoding than with IA32

Registers
rA or rB represent one of the registers (0-7)
0xF denotes no register (when needed)
No partial register options (must be a byte)

366

Move operation

Different opcodes for 4 types of moves
register to register (opcode = 2)
 Notice conditional move has opcode 2 as well
immediate to register (opcode = 3)
register to memory (opcode = 4)
memory to register (opcode = 5)

The only memory addressing mode is base register + displacement
Memory operations always move 4 bytes (no byte or word
memory operations i.e. no 8/16-bit move)
Source or destination of memory move must be a register.

367
CORRECTION = F

Move operation (cont)

368

Supported OPs and Jump

OP1 (opcode = 6)
Only take registers as operands
Only work on 32 bits
Note: no “or” and “not” ops
Only instructions to set CC

Jump instructions (opcode = 7)
fn = 0 for unconditional jump
fn =1-6 for <= < = != >= >
Refer to generically as “jXX”
Encodings differ only by “function code”
Based on values of condition codes
Same as IA32 counterparts
Encode full destination address
 Unlike PC-relative addressing seen in IA32

369

fn operation

0 addl

1 subl

2 andl

3 xorl

Conditional move

Refer to generically
as “cmovXX”
Encodings differ
only by “function
code”
Based on values of
condition codes
Variants of rrmovl
instruction

(conditionally)
copy value from
source to
destination
register

370

Stack Operations

Stack
for Y86
works
just the
same as
with
IA32

371

Subroutine call and return

372

Note: call uses absolute addressing

Miscellaneous instructions

373

Status conditions

374

Instruction encoding practice

375

Determine the byte encoding of the following Y86 instruction
sequence given “.pos 0x100” specifies the starting address of the
object code to be 0x100 (practice problem 4.1)

.pos 0x100 # start code at address 0x100
 irmovl $15, %ebx # load 15 into %ebx
 rrmovl %ebx, %ecx # copy 15 to %ecx
loop:
 rmmovl %ecx, -3(%ebx) # save %ecx at addr 15-3=12
 addl %ebx, %ecx # increment %ecx by 15
 jmp loop # goto loop

Instruction encoding practice (cont)

0x100: 30f3fcffffff 406300080000 00
0x100: 30f3fcffffff irmovl $-4, %ebx
0x106: 406300080000 rmmovl %esi, 0x800(%ebx)
0x10c: 00 halt

Now you try:

0x200: a06f 80080200000030f30a00000090
0x400: 6113730004000000

376

Summary

Important property of any instruction set

THE BYTE ENCODINGS MUST HAVE A UNIQUE
INTERPRETATION

which

ENSURES THAT A PRCESSOR CAN EXECUTE
AN OBJECT-CODE PROGRAM WITHOUT ANY
AMBIGUITY ABOUT THE MEANING OF THE

CODE

377

