
A Formal Y86 Simulator with CHERI Features
FMCAD 2025

Carl Kwan, Yutong Xin, Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: October 6, 2025 at 12:34

1 FMCAD 2025

Overview

Our objective: Explore formal proofs about CHERI-style
capabilities in an x86-style ISA (Y86).

Our process:
Introduce CHERI-style capabilities into an existing formal ISA
model
Explore memory protection and security features of CHERI
within this context
Develop techniques and tools for proving properties of
capability-protected programs
Prove the correctness of the CHERI capability compression
scheme (CHERI Concentrate)
Do everything within ACL2

2 FMCAD 2025

CHERI

CHERI (Capability Hardware Enhanced RISC Instructions) is a
capability architecture:

University of Cambridge, SRI International, others
Designed to add capabilities to existing ISAs: MIPS, RISC V,
ARM
Goal is to enable strong security protections, code
containment
An x86 version is under development

Microsoft described CHERI as a “building block for higher-level
security abstractions.”

3 FMCAD 2025

Capabilities

Unforgeable tokens, containing an address range and access
permissions for that range
Memory accesses are mediated via capabilities
Holding a capability is sufficient to grant access to the
resource
Provides a number of security benefits

4 FMCAD 2025

ACL2

ACL2 (A Computational Logic for Applicative Common Lisp) is a
software system consisting of:

a programming language (applicative subset of Common Lisp)
an extensible theory in a first-order logic
an automated theorem prover
very efficient bit-twiddling features (BDDs and AIGs)

ACL2 is widely used for software and hardware verification.

Some industrial users: AMD, Arm, Centaur Technology, IBM,
Intel, Oracle, and Collins Aerospace.

5 FMCAD 2025

ACL2 ISA Modeling

ACL2 is a programming language; can build executable formal
models / simulators for digital systems.

AMD K5 floating point unit
Java Virtual Machine
Motorola CAP digital processor
Rockwell Collins AAMP7 processor
many others

Most relevant for us, the x86 ISA (Shilpi Goel, et al).

6 FMCAD 2025

Shilpi Goel’s ACL2 x86 Model

A very complete formal simulator of the x86 ISA (400+
instructions)
Includes realistic memory management (segmentation and
paging)
Covers both user and system modes
Validated via co-simulation with a physical x86 processor
Provides the semantics for verifying x86 machine code
Supports symbolic execution of x86 programs
Fast: simulates 3M+ instructions/second on application
programs
Has been used to verify many x86 programs
Not a toy: has been used to boot Alpine Linux

7 FMCAD 2025

The Y86

Very simple ISA developed by
Randal Bryant and David
O’Hallaron
Loosely based on the x86 (32-bit
and 64-bit versions)
Widely used in teaching
computer architecture
Available assembler, simulator,
other tools

Warren Hunt wrote a Y86 assembler and simulator in ACL2, our
starting point for this work.

8 FMCAD 2025

Why use the Y86, rather than x86?

Ours was a relatively small project aimed at exploring proofs of
CHERI-style capabilities in a x86-style ISA.

Subtask 1.1(a) Prototype user-level (compiler) portions
of CHERI-x86 ISA on a reduced Y86 model for early proof.

Complete CHERI-x86 specs are not yet available.

The x86 is incredibly complex, and so is Shilpi’s ACL2 x86 model.

So is CHERI.

CHERI-Y86 serves as a proof-of-concept for integrating CHERI
into similar ISAs, especially the x86.

9 FMCAD 2025

Y86 Model

The Y86 ISA model is an interpreter-style operational semantics:
recursively-defined interpreter
given instructions/programs stored in the processor state.
each instruction is defined by a semantic function
simulates the execution of machine code

10 FMCAD 2025

Y86 Model

Four main aspects to any such model:
State: data structure representing the current processor state
(memory, registers, flags, etc.)
Instruction Semantic Functions: for a specific instruction,
take a processor state as input and return a modified state as
output.
Step Function: fetches, decodes and executes a machine
instruction by calling an appropriate semantic function.
Run Function: execute n steps on an initial state and return
a modified state.

Can use ACL2 both to simulate concrete program runs and/or
reason about symbolic program runs.

11 FMCAD 2025

CHERI-Y86 State

Name Field Description
Registers rgf 15 general-purpose 128-bit registers

RIP rip Program counter
ZF zf Zero flag
SF sf Sign flag
OF of Overflow flag

Memory mem 264 bytes modelled with 224 addresses
MS ms Model state, indicates model errors

Registers are extended to 128 bits to accommodate CHERI
capabilities.

If MS is anything other then nil, execution halts.

12 FMCAD 2025

Y86 Step and Run Functions

(defun y86 -step (y86 -64)
(b* ((pc (rip y86 -64))

(byte -at -pc (rm08 pc y86 -64))
(nibble -1 (logand byte -at -pc #xF0)))

(case nibble -1
;; halt: Stop the machine
(#x00

(case byte -at -pc
(#x00 (y86 -halt y86 -64))
(t (y86 -illegal - opcode y86 -64))))

;; nop: No - operation
(#x10

(case byte -at -pc
(#x10 (y86 -nop y86 -64))
(t (y86 -illegal - opcode y86 -64))))

....
)))

(defun y86 (y86 -64 n)
(if (or (zp n) (ms y86 -64))

y86 -64
(y86 (y86 -step y86 -64) (1- n))))))

13 FMCAD 2025

Updates to Y86

To modify the Y86 with CHERI-like capabilities we needed to:
Modify the state, extending registers from 64 to 128 bits
Add Y86 versions of CHERI instructions that create and
manipulate capabilities
Modify existing Y86 instructions that touch memory to be
capability aware (incomplete)

14 FMCAD 2025

CHERI Instructions

CHERI capability instructions added to CHERI-Y86:

Capability inspection Capability modification
cPerm-to-rB cSeal
cType-to-rB cAndPerm
cBase-to-rB cSetOffset
cLen-to-rB cSetAddr
cTag-to-rB cIncOffset
gcOff cIncOffsetImm
gcFlags cSetBounds
gcHi cSetBoundsExact
gcLim cSetBoundsImm

cClearTag
cBuildCap
cCopyType
cCSeal
cSealEntry

15 FMCAD 2025

Example CHERI-Y85 Capability Instruction

An example CHERI instruction (pseudocode): Get permissions
from the capability in rA, store in rB.
procedure cPerm -to -rB(y86 -64)

pc <- RIP(y86 -64)
if pc < 254 − 4 then

return !MS(y86 -64 , "PC too large ")
rArB <- ReadMem (pc+2, y86 -64)
rB <- rArB & 24

rA <- ShiftRight (rArB , 4) & 24 − 1
if rA = 15 or rB = 15 then

return !MS(y86 -64 , " Prohibited register ")
cs1 <- GetCapability (y86 -64 , rA)
cPerms <- GetPerm (cs1)
y86 -64 <- !rgfi(rb , cPerms , y86 -64)
y86 -64 <- !rip(pc+3, y86 -64)
return y86 -64

16 FMCAD 2025

Example Property: Monotonicity

An important property of capabilities is monotonicity: a new
capability created from an existing capability doesn’t expand the
permissions.

Example theorem: if a capability-modification instruction is given
a capability c1 that results in a new capability c2, then
permissions(c2) ⊂ permissions(c1).

This might apply to cSetBounds, which takes a capability c1 and
register r to create a new capability c2 with bounds based on the
address of c1 and the value in r . (All fields but the bounds are
identical to c1.)

17 FMCAD 2025

Example Property: Monotonicity of setBounds

(defthmd setBounds -cap - bounded
(b* ((cs1 (get -reg - capability 0 y86 -64))

(rs2 (rgfi 1 y86 -64))
(addr (+ (acap ->base cs1)

(acap -> offset cs1)))
(cs1 (change -acap cs1 :base addr))
(cs1 (change -acap cs1 :len rs2))
(new -cap (get -reg - capability 2

(y86 -cap -step y86 -64))))
(implies

(and (y86 -64p y86 -64)
(y86 -mem -program -bytes - loadedp

mod -instr -code -1 y86 -64)
(equal (rip y86 -64) 131)
(equal (rgfi 0 y86 -64) (rm128 0 y86 -64))
(equal (rgfi 1 y86 -64) (rm128 16 y86 -64)))

(and (<= (cGetBase cs1) (cGetBase new -cap))
(<= (cGetTop new -cap) (cGetTop cs1))))))

18 FMCAD 2025

Raw (Architectural) Capabilities in CHERI

A CHERI capability encodes:
64-bit base address (base)
64-bit length (length)
64-bit offset
16-bit permissions (perms)
19-bit metadata

This requires 256 bits to store, which is expensive, and would
require 256-bit registers.

19 FMCAD 2025

CHERI Concentrate

The CHERI developers designed a compressed format they call
CHERI Concentrate.

27-bit compressed bounds
64-bit current address (base + offset)
16-bit permissions (perms)
19-bit metadata

This compressed form fits into 128 bit memory / registers.

Reduces L2 cache misses by 50–70% compared to uncompressed
capabilities.

20 FMCAD 2025

CHERI Capabilities

p otype I t[11:3] tE b[13:33] bE

a

64 0

CHERI capabilities contain:
a: 64-bit address
p: 16 permission bits
otype: type of object designated / sealed
I: 1 bit indicating whether bounds are in exponent form
t[11:3]&tE : 12 bits for computing “top” 14-bit memory address
b[13:3]&bE : 14 bits for computing “base” 14-bit memory
address

21 FMCAD 2025

Properties of CHERI Concentrate

We model the CHERI Concentrate encode (compression) and
decode algorithms.

Naturally, compressing 227 bits of information into 128 bits loses
accuracy, except in certain circumstances.

22 FMCAD 2025

Properties of CHERI Concentrate

Let b0, l0 and t0 be base, length and top of the raw capability. Let
b1, l1 and t1 be base, length and top after encoding and then
decoding the result.

We verify these properties:
1 b0 ≥ b1, for any b0, t0, and address;
2 b0 − b1 ≤ 2E+3, for any b0, t0, and address;
3 t0 ≤ t1, for any b0, t0, and address;
4 t1 − t0 ≤ 2E+3, for any b0, t0, and address;
5 b0 = b1 and t0 = t1 when the lower E + 3 bits of b0 and t0

are zero;
6 b0 = b1 and t0 = t1 when l0 < 212

23 FMCAD 2025

Proving CHERI Concentrate

These properties of CHERI Concentrate are bit-twiddling properties
over a finite domain.

We used ACL2’s symbolic simulation framework GL, which
supports model checking with binary decision diagrams (BDDs).

This is property 6.
(def -gl -thm decode -encode -equal -small -seg

:hyp (and (valid -addr -p addr base len)
(valid -b-l-p base len)
(< len (expt 2 12)))

: concl (equal (decode - compression
(encode - compression len base) addr)

(bounds (+ len base) base))
:g- bindings ‘((base ,(gl ::g-int 0 3 65))

(len ,(gl ::g-int 1 3 66))
(addr ,(gl ::g-int 2 3 65))))

24 FMCAD 2025

What We Accomplished

1 Modeled CHERI capabilities in ACL2.
2 Modified our Y86 model to be capability-aware (CHERI-Y86),

adding all CHERI capability instructions.
3 Proved security properties of some simple programs
4 Proved some security properties of CHERI instructions (e.g.

monotonicity)
5 Proved CHERI Concentrate conversions between

memory-resident capabilities and raw capabilities

25 FMCAD 2025

More to be Done

Add pre- and post-processing to allow reading compiled
binaries
Port capability features from Y86 to x86
Prove properties of significant capability-aware applications

26 FMCAD 2025

