
Introduction to Programming in Python
Strings

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: June 4, 2021 at 11:04

Texas Summer Discovery Slideset 10: 1 Strings

Strings and Characters

A string is a sequence of characters. Python treats strings and
characters in the same way. Use either single or double quote
marks.

letter = ’A’ # same as letter = "A"
numChar = "4" # same as numChar = ’4’
msg = "Good morning "

(Many) characters are represented in memory by binary strings in
the ASCII (American Standard Code for Information Interchange)
encoding.

Texas Summer Discovery Slideset 10: 2 Strings

Strings and Characters

A string is represented in memory by a sequence of ASCII
character codes. So manipulating characters really means
manipulating these numbers in memory.

... ...

... ...
2000 01001010 Encoding for character ’J’
2001 01100001 Encoding for character ’a’
2002 01110110 Encoding for character ’v’
2003 01100001 Encoding for character ’a’

... ...

... ...

Texas Summer Discovery Slideset 10: 3 Strings

ASCII

The following is part of the ASCII (American Standard Code for
Information Interchange) representation for characters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
32 ! ” # $ % & ’ () * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [\] ∧
96 ‘ a b c d e f g h i j k l m n o
112 p q r s t u v w x y z { — }

The standard ASCII table defines 128 character codes (from 0 to
127), of which, the first 32 are control codes (non-printable), and
the remaining 96 character codes are representable characters.

Texas Summer Discovery Slideset 10: 4 Strings

Unicode

ASCII codes are only 7 bits (some are extended to 8 bits). 7 bits
only allows 128 characters. There are many more characters than
that in the world.

Unicode is an extension to ASCII that uses multiple bytes for
character encodings. With Unicode you can have Chinese
characters, Hebrew characters, Greek characters, etc.

Unicode was defined such that ASCII is a subset. So Unicode
readers recognize ASCII.

Texas Summer Discovery Slideset 10: 5 Strings

Operating on Characters

Notice that:
The lowercase letters have consecutive ASCII values
(97...122); so do the uppercase letters (65...90).
The uppercase letters have lower ASCII values than the
uppercase letters, so “less” alphabetically.
There is a difference of 32 between any lowercase letter and
the corresponding uppercase letter.

To convert from upper to lower, add 32 to the ASCII value.

To convert from lower to upper, subtract 32 from the ASCII value.

To sort characters/strings, sort their ASCII representations.

Texas Summer Discovery Slideset 10: 6 Strings

ord and chr
Two useful functions for characters:

ord(c) : give the ASCII code for character c; returns a
number.

chr(n) : give the character with ASCII code n; returns a
character.

>>> ord(’a’)
97
>>> ord(’A’)
65
>>> diff = (ord(’a’) - ord(’A’))
>>> diff
32
>>> upper = ’R’
>>> lower = chr(ord(upper) + diff) # upper to lower
>>> lower
’r’
>>> lower = ’m’
>>> upper = chr(ord(lower) - diff) # lower to upper
>>> upper
’M’

Texas Summer Discovery Slideset 10: 7 Strings

Escape Characters
Some special characters wouldn’t be easy to include in strings,
e.g., single or double quotes.
>>> print ("He said: " Hello "")

File "<stdin >", line 1
print ("He said: " Hello "")

ˆ
SyntaxError : invalid syntax

What went wrong?

To include these in a string, we need an escape sequence.

Escape Escape
Sequence Name Sequence Name

\n linefeed \’ single quote
\f formfeed \" double quote
\b backspace \r carriage return
\t tab \\ backslash

Texas Summer Discovery Slideset 10: 8 Strings

Creating Strings

Strings are immutable meaning that two instances of the same
string are really the same object.
>>> s1 = str(" Hello ") # using the constructor function
>>> s2 = " Hello " # alternative syntax
>>> s3 = str(" Hello ")
>>> s1 is s2 # are these the same object ?
True
>>> s2 is s3
True

Texas Summer Discovery Slideset 10: 9 Strings

Functions on Strings

Some functions that are available on strings:

Function Description
len(s) return length of the string
min(s) return char in string with lowest ASCII value
max(s) return char in string with highest ASCII value

>>> s1 = "Hello , World !"
>>> len(s1)
13
>>> min(s1)
’ ’
>>> min(" Hello ")
’H’
>>> max(s1)
’r’

Why does it make sense for a blank to have lower ASCII value than
any letter?

Texas Summer Discovery Slideset 10: 10 Strings

Indexing into Strings

Strings are sequences of characters, which can be accessed via an
index.

Indexes are 0-based, ranging from [0 ... len(s)-1].

You can also index using negatives, s[-i] means -i+len(s)].

Texas Summer Discovery Slideset 10: 11 Strings

Indexing into Strings

>>> s = "Hello , World !"
>>> s[0]
’H’
>>> s[6]
’ ’
>>> s[-1]
’!’
>>> s[-6]
’W’
>>> s[-6 + len(s)]
’W’

Texas Summer Discovery Slideset 10: 12 Strings

Slicing

Slicing means to select a contiguous
subsequence of a sequence or string.

General Form:
String[start : end]

>>> s = "Hello , World !"
>>> s[1 : 4] # substring from s [1]... s[3]
’ell ’
>>> s[: 4] # substring from s [0]... s[3]
’Hell ’
>>> s[1 : -3] # substring from s [1]... s[-4]
’ello , Wor ’
>>> s[1 :] # same as s[1 : s(len)]
’ello , World !’
>>> s[: 5] # same as s[0 : 5]
’Hello ’
>>> s[:] # same as s
’Hello , World !’
>>> s[3 : 1] # empty slice
’’

Texas Summer Discovery Slideset 10: 13 Strings

Concatenation and Repetition

General Forms:
s1 + s2
s * n
n * s

s1 + s1 means to create a new string of s1 followed by s2.
s * n or n * s means to create a new string containing n
repetitions of s

>>> s1 = " Hello "
>>> s2 = ", World !"
>>> s1 + s2 # + is not commutative
’Hello , World !’
>>> s1 * 3 # * is commutative
’HelloHelloHello ’
>>> 3 * s1
’HelloHelloHello ’

Notice that concatenation and repetition overload two familiar
operators.

Texas Summer Discovery Slideset 10: 14 Strings

in and not in operators

The in and not in operators allow checking whether one string is
a contiguous substring of another.

General Forms:
s1 in s2
s1 not in s2

>>> s1 = "xyz"
>>> s2 = " abcxyzrls "
>>> s3 = " axbyczd "
>>> s1 in s2
True
>>> s1 in s3
False
>>> s1 not in s2
False
>>> s1 not in s3
True

Texas Summer Discovery Slideset 10: 15 Strings

Comparing Strings

In addition to equality comparisons, you can order strings using the
relational operators: <, <=, >, >=.

For strings, this is lexicographic (or alphabetical) ordering using
the ASCII character codes.
>>> "abc" < "abcd"
True
>>> "abcd" <= "abc"
False
>>> "Paul Jones " < "Paul Smith "
True
>>> "Paul Smith " < "Paul Smithson "
True
>>> " Paula Smith " < "Paul Smith "
False

Texas Summer Discovery Slideset 10: 16 Strings

Iterating Over a String

Sometimes it is useful to do something to each character in a
string, e.g., change the case (lower to upper and upper to lower).
DIFF = ord(’a’) - ord(’A’)

def swapCase (s):
result = ""
for ch in s:

if (’A’ <= ch <= ’Z’):
result += chr(ord(ch) + DIFF)

elif (’a’ <= ch <= ’z’):
result += chr(ord(ch) - DIFF)

else:
result += ch

return result

print (swapCase (" abCDefGH "))

> python StringIterate .py
ABcdEFgh

Texas Summer Discovery Slideset 10: 17 Strings

Strings are Immutable

You can’t change a string, by assigning at an index. You have to
create a new string.

>>> s = "Pat"
>>> s[0] = ’R’
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : ’str ’ object does not support item assignment
>>> s2 = ’R’ + s[1:]
>>> s2
’Rat ’

Whenever you concatenate two strings or append something to a
string, you create a new value.

Texas Summer Discovery Slideset 10: 18 Strings

Functions vs. Methods

Python is an Object Oriented Language; everthing data item is a
member of a class. For example, integers are members of class
int.

When you type 2 + 3, that’s really syntactic shorthand for
int.__add__(2, 3), calling method __add__ on the class int
with arguments 2 and 3.

When you call len(lst), that’s really shorthand for
lst.__len__().

General form:

item.method(args)

So many things that look like function calls in Python are really
method invocations. That’s not true of functions you write.

Texas Summer Discovery Slideset 10: 19 Strings

Useful Testing Methods

You have to get used to the syntax of method invocation.

Below are some useful methods on strings. Notice that they are
methods, not functions, so called on string s.

Function Description
s.isalnum(): nonempty alphanumeric string?
s.isalpha(): nonempty alphabetic string?
s.isdigit(): nonempty and contains only digits?
s.isidentifier(): follows rules for Python identifier?
s.islower(): nonempty and contains only lowercase letters?
s.isupper(): nonempty and contains only uppercase letters?
s.isspace(): nonempty and contains only whitespace?

Texas Summer Discovery Slideset 10: 20 Strings

Useful Testing Methods

>>> s1 = " abc123 "
>>> isalpha (s1) # wrong syntax
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
NameError : name ’isalpha ’ is not defined
>>> s1. isalpha ()
False
>>> "1234". isdigit ()
True
>>> "abCD". isupper ()
False
>>> "\n\t \b". isspace ()
False
>>> "\n\t \t". isspace ()
True

Texas Summer Discovery Slideset 10: 21 Strings

Substring Search

Python provides some string methods to see if a string contains
another as a substring:

Function Description
s.endswith(s1): does s end with substring s1?
s.startswith(s1): does s start with substring s1?
s.find(s1): lowest index where s1 starts in s, -1 if not found
s.rfind(s1): highest index where s1 starts in s, -1 if not found
s.count(s1): number of non-overlapping occurrences of s1 in s

Texas Summer Discovery Slideset 10: 22 Strings

Substring Search

>>> s = "Hello , World !"
>>> s. endswith ("d!")
True
>>> s. startswith (" hello ") # case matters
False
>>> s. startswith (" Hello ")
True
>>> s.find(’l’) # search from left
2
>>> s. rfind (’l’) # search from right
10
>>> s. count (’l’)
3
>>> " ababababa ". count (’aba ’) # nonoverlapping occurrences
2

Texas Summer Discovery Slideset 10: 23 Strings

String Exercise

The string count method counts nonoverlapping occurrences of
one string within another.
>>> " ababababa ". count (’aba ’)
2
>>> " ababababa ". count (’c’)
0

Suppose we wanted to write a function that would count all
occurrences, including possibly overlapping ones.

Texas Summer Discovery Slideset 10: 24 Strings

String Exercise

In file countOverlaps.py:
def countOverlaps (txt , s):

""" Count the occurrences of s in txt ,
including possible overlapping occurrences . """
count = 0
while len(txt) >= len(s):

if txt. startswith (s):
count += 1

txt = txt [1:]
return count

Running our code:
>>> from countOverlaps import *
>>> txt = " abababababa "
>>> s = "aba"
>>> countOverlaps (txt , s)
5
>>>

Texas Summer Discovery Slideset 10: 25 Strings

Converting Strings

Below are some additional methods on strings. Remember that
strings are immutable, so these all make a new copy of the string.

Function Description
s.capitalize(): return a copy with first character capitalized
s.lower(): lowercase all letters
s.upper(): uppercase all letters
s.title(): capitalize all words
s.swapcase(): lowercase letters to upper, and vice versa
s.replace(old, new): replace occurences of old with new

Texas Summer Discovery Slideset 10: 26 Strings

String Conversions

>>> " abcDEfg ". upper ()
’ABCDEFG ’
>>> " abcDEfg ". lower ()
’abcdefg ’
>>> " abc123 ". upper () # only changes letters
’ABC123 ’
>>> " abcDEF ". capitalize ()
’Abcdef ’
>>> " abcDEF ". swapcase () # only changes letters
’ABCdef ’
>>> book = " introduction to programming using python "
>>> book. title () # doesn ’t change book
’Introduction To Programming Using Python ’
>>> book2 = book. replace ("ming", "s")
>>> book2
’introduction to programs using python ’
>>> book2 . title ()
’Introduction To Programs Using Python ’
>>> book2 . title (). replace (" Using ", "With")
’Introduction To Programs With Python ’

Texas Summer Discovery Slideset 10: 27 Strings

Stripping Whitespace

It’s often useful to remove whitespace at the start, end, or both of
string input. Use these functions:

Function Description
s.lstrip(): return copy with leading whitespace removed
s.rstrip(): return copy with trailing whitespace removed
s.strip(): return copy with leading and trailing whitespace removed

>>> s1 = " abc "
>>> s1. lstrip () # new string
’abc ’
>>> s1. rstrip () # new string
’ abc ’
>>> s1. strip () # new string
’abc ’
>>> "a b c". strip ()
’a b c’

Texas Summer Discovery Slideset 10: 28 Strings

String Exercise

Exercise: Input a string from the user. Count and print out the
number of lower case, upper case, and non-letters.

In file CountCases.py:
def countCases (txt):

""" For a text , count and return the number of lower
upper , and non - letter letters . """
lowers = 0
uppers = 0
nonletters = 0
For each character in the text , see if lower , upper ,
or non - letter and increment the count .
for ch in txt:

if ch. islower ():
lowers += 1

elif ch. isupper ():
uppers += 1

else:
nonletters += 1

Return a triple of the counts .
return lowers , uppers , nonletters

Texas Summer Discovery Slideset 10: 29 Strings

String Exercise

Exercise: Input a string from the user. Count and print out the
number of lower case, upper case, and non-letters.

In file CountCases.py:
def countCases (txt):

""" For a text , count and return the number of lower
upper , and non - letter letters . """
lowers = 0
uppers = 0
nonletters = 0
For each character in the text , see if lower , upper ,
or non - letter and increment the count .
for ch in txt:

if ch. islower ():
lowers += 1

elif ch. isupper ():
uppers += 1

else:
nonletters += 1

Return a triple of the counts .
return lowers , uppers , nonletters

Texas Summer Discovery Slideset 10: 30 Strings

Calling countCases

def main ():
txt = input (" Please enter a text: ")
lc , uc , nl = countCases (txt)
print (" Contains :")
print (" Lower case letters :", lc)
print (" Upper case letters :", uc)
print (" Non - letters :", nl)

main ()

Here’s a sample run:
> python CountCases .py
Please enter a text: abcXYZ784 *&ˆ def
Contains :

Lower case letters : 6
Upper case letters : 3
Non - letters : 6

Texas Summer Discovery Slideset 10: 31 Strings

