
Introduction to Programming in Python
Lists

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: June 4, 2021 at 11:05

Texas Summer Discovery Slideset 11: 1 Lists

Lists

Lists are one of the most useful types in Python.

Both strings and lists are sequence types in Python, so share many
similar methods. Unlike strings, lists are mutable.

If you change a list, it doesn’t create a new copy; it changes the
input list.

Texas Summer Discovery Slideset 11: 2 Lists

Value of Lists

Suppose you have 30 different test grades to average. You could
use 30 variables: grade1, grade2, ..., grade30. Or you could use
one list with 30 elements: grades[0], grades[1], ..., grades[29].

In file AverageScores.py:
grades = [67, 82, 56, 84, 66, 77, 64, 64, 85, 67, \

73, 63, 98, 74, 81, 67, 93, 77, 97, 65, \
77, 91, 91, 74, 93, 56, 96, 90, 91, 99]

sum = 0
for score in grades :

sum += score
average = sum / len(grades)
print (" Class average :", format (average , ".2f"))

> python AverageScores .py
Class average : 78.60

Texas Summer Discovery Slideset 11: 3 Lists

Indexing and Slicing

Indexing and slicing on lists are as for strings, including negative
indexes.

Texas Summer Discovery Slideset 11: 4 Lists

Creating Lists

Lists can be created with the list class constructor or using
special syntax.

>>> list () # create empty list , with constructor
[]
>>> list ([1 , 2, 3]) # create list [1, 2, 3]
[1, 2, 3]
>>> list (["red", 3, 2.5]) # create heterogeneous list
[’red ’, 3, 2.5]
>>> ["red", 3, 2.5] # create list , no explicit constructor
[’red ’, 3, 2.5]
>>> range (4) # not an actual list
range (0, 4)
>>> list(range (4)) # create list using range
[0, 1, 2, 3]
>>> list("abcd") # create character list from string
[’a’, ’b’, ’c’, ’d’]

Texas Summer Discovery Slideset 11: 5 Lists

Sequence Operations

Lists, like strings, are sequences and inherit various functions from
sequences.

Function Description
x in s x is in sequence s
x not in s x is not in sequence s
s1 + s2 concatenates two sequences
s * n repeat sequence s n times
s[i] ith element of sequence (0-based)
s[i:j] slice of sequence s from i to j-1
len(s) number of elements in s
min(s) minimum element of s
max(s) maximum element of s
sum(s) sum of elements in s
for loop traverse elements of sequence
<, <=, >, >= compares two sequences
==, != compares two sequences

Texas Summer Discovery Slideset 11: 6 Lists

Calling Functions on Lists

>>> l1 = [1, 2, 3, 4, 5]
>>> len(l1)
5
>>> min(l1) # assumes elements are comparable
1
>>> max(l1) # assumes elements are comparable
5
>>> sum(l1) # assumes summing makes sense
15
>>> l2 = [1, 2, "red"]
>>> sum(l2)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : unsupported type(s) for +: ’int ’ and ’str ’
>>> min(l2)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : ’<’ not supported between ’str ’ and ’int ’
>>>

Texas Summer Discovery Slideset 11: 7 Lists

Using Functions

We could rewrite AverageScores.py as follows:
grades = [67, 82, 56, 84, 66, 77, 64, 64, 85, 67, \

73, 63, 98, 74, 81, 67, 93, 77, 97, 65, \
77, 91, 91, 74, 93, 56, 96, 90, 91, 99]

average = sum(grades) / len(grades)
print (" Class average :", format (average , ".2f"))

> python AverageScores .py
Class average : 78.60

Texas Summer Discovery Slideset 11: 8 Lists

Grade Example Using Lists

Exercise: Remember from Slideset 5, we solved a problem to
compute and print out a Student Grade Report. The user input
the student name and grades. Let’s solve the same problem where
the information is in a list.

Recall Susie Q. had grades:

Exam grades: 75/100, 85/90, 57/65
Project grades: 95/100, 150/200

But now we’ll assume that the grades are given to the program in
a list:

[’Susie Q.’, 75, 85, 57, 95, 150]

Texas Summer Discovery Slideset 11: 9 Lists

Grade Example Using Lists
EXAM1POINTS , EXAM2POINTS , EXAM3POINTS = 100 , 90, 65
PROJ1POINTS , PROJ2POINTS = 100 , 200

def printGradeReport (lst):
""" Print a grade report for the student . The argument
list contains the student ’s name and grades in format :
[name , exam1 , exam2 , exam3 , proj1 , proj2]. """
student = lst [0]
exam1Norm = (lst [1] / EXAM1POINTS) * 100.0
exam2Norm = (lst [2] / EXAM2POINTS) * 100.0
exam3Norm = (lst [3] / EXAM3POINTS) * 100.0

proj1Norm = (lst [4] / PROJ1POINTS) * 100.0
proj2Norm = (lst [5] / PROJ2POINTS) * 100.0

Compute the average of the three exams :
examAvg = (exam1Norm + exam2Norm + exam3Norm) / 3

Compute the average of the two projects :
projAvg = (proj1Norm + proj2Norm) / 2

Find the weighted average :
courseAvg = examAvg * 0.6 + projAvg * 0.4

Texas Summer Discovery Slideset 11: 10 Lists

Grade Example Using Lists

Print the student ’s grade report .
(note same as previous versions)

print ()
print (" Grades for", student)
print (" Exam1 :", round (exam1Norm , 2))
print (" Exam2 :", round (exam2Norm , 2))
print (" Exam3 :", round (exam3Norm , 2))
print ("Exam average :", round (examAvg , 2))

print (" Proj1 :", round (proj1Norm , 2))
print (" Proj2 :", round (proj2Norm , 2))
print ("Proj average :", round (projAvg , 2))

print (" Course average :", round (courseAvg , 2))

def main ():
SusieRecord = [’Susie Q.’, 75, 85, 57, 95, 150]
printGradeReport (SusieRecord)

main ()

Texas Summer Discovery Slideset 11: 11 Lists

Traversing Elements with a For Loop

General Form:
for u in list:

body

In file forInListExamples.py:
for i in [2, 3, 5, 7, 11, 13, 17]:

print (i, end=", ")
print ()

sum = 0
for j in range (100): # Not really a list

sum += j
print ("Sum:", sum)

print (" Squares :")
for k in [1, 2, 3, 4, 5, 6, 7]:

print (" "*k, k**2)
print ()

Texas Summer Discovery Slideset 11: 12 Lists

Traversing Elements with a For Loop

> python forInListExamples .py
2, 3, 5, 7, 11, 13, 17,
Sum: 4950
Squares :

1
4

9
16

25
36

49

Texas Summer Discovery Slideset 11: 13 Lists

More List Methods

These are methods from class list. Since lists are mutable, these
actually change l.

Function Description
l.append(x) add x to the end of l
l.count(x) number of times x appears in l
l.extend(l1) append elements of l1 to l
l.index(x) index of first occurrence of x in l
l.insert(i, x) insert x into l at position i
l.pop() remove and return the last element of l
l.pop(i) remove and return the ith element of l
l.remove(x) remove the first occurrence of x from l
l.reverse() reverse the elements of l
l.sort() order the elements of l

Texas Summer Discovery Slideset 11: 14 Lists

List Examples

>>> l1 = [1, 2, 3]
>>> l1. append (4) # add 4 to the end of l1
>>> l1 # note: changes l1
[1, 2, 3, 4]
>>> l1. count (4) # count occurrences of 4 in l1
1
>>> l2 = [5, 6, 7]
>>> l1. extend (l2) # add elements of l2 to l1
>>> l1
[1, 2, 3, 4, 5, 6, 7]
>>> l1. index (5) # where does 5 occur in l1?
4
>>> l1. insert (0, 0) # add 0 at the start of l1
>>> l1 # note new value of l1
[0, 1, 2, 3, 4, 5, 6, 7]
>>> l1. insert (3, ’a’) # lists are heterogenous
>>> l1
[0, 1, 2, ’a’, 3, 4, 5, 6, 7]
>>> l1. remove (’a’) # what goes in can come out
>>> l1
[0, 1, 2, 3, 4, 5, 6, 7]

Texas Summer Discovery Slideset 11: 15 Lists

List Examples

>>> l1.pop () # remove and return last element
7
>>> l1
[0, 1, 2, 3, 4, 5, 6]
>>> l1. reverse () # reverse order of elements
>>> l1
[6, 5, 4, 3, 2, 1, 0]
>>> l1.sort () # elements must be comparable
>>> l1
[0, 1, 2, 3, 4, 5, 6]
>>> l2 = [4, 1.3 , "dog"]
>>> l2.sort () # elements must be comparable
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : ’<’ not supported between ’str ’ and ’float ’
>>> l2.pop () # put the dog out
’dog ’
>>> l2
[4, 1.3]
>>> l2.sort () # int and float are comparable
>>> l2
[1.3 , 4]

Texas Summer Discovery Slideset 11: 16 Lists

Splitting a String into a List

Splitting a string into a list of strings is often useful.
>>> str1 = "abc , def , ghi"
>>> str1. split (",") # split on comma
[’abc ’, ’ def ’, ’ ghi ’] # keeps whitespace
>>> strs = " abc def ghi "
strs. split () # split on whitespace
[’abc ’, ’def ’, ’ghi ’]
>>> str3 = "\tabc\ndef\r ghi\n"
>>> str3. split () # split on whitespace
[’abc ’, ’def ’, ’ghi ’]
>>> str4 = "abc / def / ghi"
>>> str4. split ("/") # split on slash
[’abc ’, ’ def ’, ’ ghi ’]

Note split with no arguments splits on whitespace.

Texas Summer Discovery Slideset 11: 17 Lists

Copying Lists

Suppose you want to make a copy of a list. The following won’t
work!
>>> lst1 = [1, 2, 3, 4]
>>> lst2 = lst1
>>> lst1 is lst2 # there ’s only one list here
True
>>> print (lst1)
[1, 2, 3, 4]
>>> print (lst2)
[1, 2, 3, 4]
>>> lst1. append (5) # changes to lst1 also change lst2
>>> print (lst2)
[1, 2, 3, 4, 5]

But you can do the following:
>>> lst2 = lst1 [:] # slicing creates a new copy

Texas Summer Discovery Slideset 11: 18 Lists

List Example: Counting Occurrences of Letters

Suppose we want to count the
occurrences of letters in a given
text. Here’s an algorithm.

1 Create a list called “counts” of 26 zeros.
2 For each letter in the text

Convert it to lowercase
If it’s the ith letter, increment counts[i] by 1

3 Print the counts list is a nice format.

Texas Summer Discovery Slideset 11: 19 Lists

List Example: Counting Occurrences of Letters

In file CountOccurrencesInText.py:
def countOccurrences (text):

""" Count occurrences of each of the 26 letters
(upper or lower case) in text. Return a list of
counts in order . """

Create a list of 26 0’s.
counts = [0] * 26
Look at each character in text.
for ch in text:

Make it lowercase .
ch = ch. lower ()
If it ’s alpha , count it.
if ch. isalpha ():

Turn the character into an index .
index = ord(ch) - ord(’a’)
counts [index] += 1

return counts

Texas Summer Discovery Slideset 11: 20 Lists

List Example: Counting Occurrences of Letters

Now we want to print the counts in a nice format, 10 per line.

def printCounts (counts):
""" Print the letter counts 10 per line. """
onLine = 0
for i in range (26):

Convert the index into the array into the
corresponding lower case letter .
letter = chr(i + ord(’a’))
print (letter + ":", counts [i], end = " ")
onLine += 1
If we ’ve printed 10 on the line , go to the next

line.
if (onLine == 10):

print ()
onLine = 0

print ()

Texas Summer Discovery Slideset 11: 21 Lists

List Example: Counting Occurrences of Letters

def main ():
txt = """ Once upon a midnight dreary , while I pondered ,

weak and weary , Over many a quaint and curious
volume of forgotten lore."""

counts = countOccurrences (txt)
printCounts (counts)

main ()

> python countOccurrencesInText .py
a: 9 b: 0 c: 2 d: 6 e: 11 f: 2 g: 2 h: 2 i: 6 j: 0
k: 1 l: 3 m: 3 n: 9 o: 10 p: 2 q: 1 r: 8 s: 1 t: 4
u: 5 v: 2 w: 3 x: 0 y: 3 z: 0

Texas Summer Discovery Slideset 11: 22 Lists

Searching a List

A common operation on lists is
searching. To search a list means to
see if a value is in the list.

If all you care about is whether or not
lst contains value x, you can use:
x in lst.

Often you want to know the index of
the occurrence, if any.

There are many different search
methods depending on the properties of
the list.

Texas Summer Discovery Slideset 11: 23 Lists

Linear Searching

If the list is not sorted, often the best you can do is look at each
element in turn. This is called a linear search.

From file LinearSearch.py:
def linearSearch (lst , key):

for i in range(len(lst)):
if key == lst[i]:

return i
return -1

If the item is present, you stop as soon as you find it. On average,
how many comparisons would you expect to make if the item is
there? How many if it’s not there?

Texas Summer Discovery Slideset 11: 24 Lists

Linear Searching

>>> from LinearSearch import *
>>> lst = [1, 3, 5, 7, 9]
>>> linearSearch (lst , 7)
3
>>> linearSearch (lst , 1)
0
>>> linearSearch (lst , 8)
-1
>>> linearSearch ([1, 2, 1, 2, 1, 2], 2)
1

We use -1 to indicate that the item is not in the list, since -1 is not
a legal index.

Texas Summer Discovery Slideset 11: 25 Lists

Find Multiple Occurrences

Notice that linearSearch only finds the first occurrence of the
key. To find all, you might do:
def findAllOccurrences (lst , key):

Return a list of indexes of occurrences
of key in lst.
found = []
for i in range (len(lst)):

if key == lst[i]:
found . append (i)

return found

>>> from LinearSearch import *
>>> findAllOccurrences ([1, 2, 1, 2, 1, 2], 2)
[1, 3, 5]

Here you do have to search the whole list.

Texas Summer Discovery Slideset 11: 26 Lists

Using Index

You can use index to do linear search if you know that the item is
present.
>>> lst = [9, 3, 5, 7, 1, 2, 4, 8]
>>> lst. index(7)
3
>>> lst. index(10)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
ValueError : 10 is not in list
>>>

The index method is almost certainly implemented using linear
search.

Texas Summer Discovery Slideset 11: 27 Lists

Two-Dimensional Lists

Recall that lists in Python are heterogeneous, meaning that you
can have items of various types. Lists items can themselves be
lists, lists of lists, etc.
>>> gradeSheet = [[’Susie Q.’, 75, 85, 57, 95, 150] , \

[’Frank G.’, 85, 90, 49, 24, 125] , \
[’Albert A.’, 95, 70, 65, 82, 99] , \
[’Charles T.’, 70, 82, 54, 80, 186]]

>>> gradeSheet [0]
[’Susie Q.’, 75, 85, 57, 95, 150]
>>> gradeSheet [0][0]
’Susie Q.’
>>> gradeSheet [2][3]
65

Note that if the item at lst[i] is itself a list, you can index into
that list. You can think of them as row and column indexes.

Texas Summer Discovery Slideset 11: 28 Lists

Grade Example with List of Lists

Suppose we have a GradeSheet like this one:

gradeSheet = [[’Susie Q.’, 75, 85, 57, 95, 150],
[’Frank G.’, 85, 90, 49, 24, 125],
[’Albert A.’, 95, 70, 65, 82, 99],
[’Charles T.’, 70, 82, 54, 80, 186]]

How would we change our previous Grading program to print grade
reports for each of the students?

Texas Summer Discovery Slideset 11: 29 Lists

Grade Example with List of Lists

In file Grade4.py:
from Grade3 import printGradeReport

def main ():
This uses our printGradeReport from Grade3 .py.

gradeSheet = [[’Susie Q.’, 75, 85, 57, 95, 150] , \
[’Frank G.’, 85, 90, 49, 24, 125] , \
[’Albert A.’, 95, 70, 65, 82, 99] , \
[’Charles T.’, 70, 82, 54, 80, 186]]

for studentRecord in gradeSheet :
printGradeReport (studentRecord)
print ()

main ()

Also comment out the call to main() in Grade3.py so it won’t
run when you import it.

Texas Summer Discovery Slideset 11: 30 Lists

Running Grade4.py

> python Grade4 .py

Grades for Susie Q.
Exam1 : 75.0
Exam2 : 94.44
Exam3 : 87.69

Exam average : 85.71
Proj1 : 95.0
Proj2 : 75.0

Proj average : 85.0
Course average : 85.43

Grades for Frank G.
...

Grades for Albert A.
...

Grades for Charles T.
...

Texas Summer Discovery Slideset 11: 31 Lists

