
Introduction to Programming in Python
Data Types and Input

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: June 4, 2021 at 11:04

Texas Summer Discovery Slideset 5: 1 Data Types and Input

Common Python Data Types

Texas Summer Discovery Slideset 5: 2 Data Types and Input

What is a Data Type?

A data type is a kind of value.
Type Description Syntax example
int An immutable fixed precision number of

unlimited magnitude
42

float An immutable floating point number
(system-defined precision)

3.1415927

str An immutable sequence of characters. ’Wikipedia’
”Wikipedia”
”””Spanning
multiple lines”””

bool An immutable truth value True, False
tuple Immutable, can contain mixed types (4.0, ’string’, True)
bytes An immutable sequence of bytes b’Some ASCII’

b”Some ASCII”
list Mutable, can contain mixed types [4.0, ’string’, True, 4.0]
set Mutable, unordered, no duplicates {4.0, ’string’, True}
dict A mutable group of key and value pairs {’key1’: 1.0, 3: False}

Texas Summer Discovery Slideset 5: 3 Data Types and Input

Three Common Data Types

Three data types you’ll encounter in many Python programs are:
int: signed integers (whole numbers)

Computations are exact and of unlimited size
Examples: 4, -17, 0

float: signed real numbers (numbers with decimal points)
Large range, but fixed precision
Computations are approximate, not exact
Examples: 3.2, -9.0, 3.5e7

str: represents text (a string)
We use it for input and output
We’ll see more uses later
Examples: ”Hello, World!”, ’abc’

These are all immutable.

Texas Summer Discovery Slideset 5: 4 Data Types and Input



Mutable vs. Immutable

An immutable object is one that cannot be changed by the
programmer after you create it; e.g., numbers, strings, etc.

A mutable object is one that can be changed; e.g., sets, lists, etc.

Texas Summer Discovery Slideset 5: 5 Data Types and Input

How is Data Stored?

The memory can be thought of as a big array of bytes, where a
byte is a sequence of 8 bits. Each memory address has an address
(0..maximum address) and contents (8 bits).

... ...

... ...
10000 01001010 Encoding for character ’J’
10001 01100001 Encoding for character ’a’
10002 01110110 Encoding for character ’v’
10003 01100001 Encoding for character ’a’

... ...

... ...

A byte is the smallest unit of storage a programmer can address.
We say that the memory is byte-addressable.

Texas Summer Discovery Slideset 5: 6 Data Types and Input

Representation Example: ASCII

The standard way to represent characters in memory is ASCII. The
following is part of the ASCII (American Standard Code for
Information Interchange) representation:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
32 ! ” # $ % & ’ ( ) * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [ \ ] ∧
96 ‘ a b c d e f g h i j k l m n o

112 p q r s t u v w x y z { — }

The standard ASCII table defines 128 character codes (from 0 to
127), of which, the first 32 are control codes (non-printable), and
the remaining 96 character codes are printing characters.

Texas Summer Discovery Slideset 5: 7 Data Types and Input

How is Data Stored

Characters or small numbers can be stored in one byte. If data
can’t be stored in a single byte (e.g., a large number), it must be
split across a number of adjacent bytes in memory.

The way data is encoded in bytes varies depending on:
the data type
the specifics of the computer

Most of the time, we won’t need to know how data is stored in the
memory. The computer will take care of that for you.

Texas Summer Discovery Slideset 5: 8 Data Types and Input



Data Type Conversion

Warning: the string "25" is not the same as the number 25. You
can’t do arithmetic on strings.

Python provides functions to explicitly convert data items from one
type to another:

float (< number, variable, string >)
int (<number, variable, string >)
str (<number, variable >)
eval (<string >)

Try not to use eval; it is considered dangerous.

Note: int truncates, meaning it throws away the decimal point
and anything that comes after it. If you need to round to the
nearest whole number, use:

round (<number or variable >)

Texas Summer Discovery Slideset 5: 9 Data Types and Input

Conversion Examples

float (17)
17.0
>>> str (17)
’17 ’
>>> int (17.75) # truncates
17
>>> str (17.75)
’17.75 ’
>>> int("17")
17
>>> float ("17")
17.0
>>> round (17.1)
17
>>> round (17.6)
18
>>> eval("4.3 + 2.5")
6.8
>>> eval (4.3 + 2.5)
TypeError : eval () arg 1 must be a string

Texas Summer Discovery Slideset 5: 10 Data Types and Input

Keyboard Input

The input() function is used to read data from the user during
program execution.

General form:
input (<prompt string >)

When it’s called:
It prints the “prompt string” to the terminal. This is the
message to tell the user to enter some input.
It waits until the user types something and hits “Enter” or
“Return.”
It reads in what the user typed as a string.

Texas Summer Discovery Slideset 5: 11 Data Types and Input

Input Example

>>> input(" Enter a number : ")
Enter a number : 32
’32’
>>> numEntered = input("Enter a number : ")
Enter a number : 32
>>> numEntered + 1
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : must be str , not int
>>> int( numEntered ) + 1
33

Notice that the error happened because we tried to add a str to
an integer.

Remember that keyboard input is always read as a str. Interpret
that string as an integer by using the int function.

Texas Summer Discovery Slideset 5: 12 Data Types and Input



Exercise: Grade Report with input

Suppose we want to redo our Student Grade Example. Remember
we computed a grade report for a specific student, Susie Q. We’d
like to write it so that it works for any student. Add input
statements so you can enter the name and grades.

Try to keep as much of the previous code as possible.

Texas Summer Discovery Slideset 5: 13 Data Types and Input

Exercise: Grade Report with input

In file Grade2.py:
# Constants defining possible points for each exam
# and project :
EXAM1POINTS , EXAM2POINTS , EXAM3POINTS = 100 , 90, 65
PROJ1POINTS , PROJ2POINTS = 100 , 200

# Enter the student ’s name:
student = input (" Enter student name: ")

# Ask user to input three exam grades :
exam1Grade = int( input (" Enter Exam1 grade : " ))
exam2Grade = int( input (" Enter Exam2 grade : " ))
exam3Grade = int( input (" Enter Exam3 grade : " ))

# Normalize each exam score :
exam1Norm = ( exam1Grade / EXAM1POINTS ) * 100.0
exam2Norm = ( exam2Grade / EXAM2POINTS ) * 100.0
exam3Norm = ( exam3Grade / EXAM3POINTS ) * 100.0

# Compute the average of the three exams :
examAvg = ( exam1Norm + exam2Norm + exam3Norm ) / 3

Texas Summer Discovery Slideset 5: 14 Data Types and Input

Exercise: Grade Report with input

# Ask user to input two project grades :
proj1Grade = int( input (" Enter Proj1 grade : " ))
proj2Grade = int( input (" Enter Proj2 grade : " ))

# Normalize each project score :
proj1Norm = ( proj1Grade / PROJ1POINTS ) * 100.0
proj2Norm = ( proj2Grade / PROJ2POINTS ) * 100.0

# Compute the average of the two projects :
projAvg = ( proj1Norm + proj2Norm ) / 2

# COURSE AVERAGE :

# Find the weighted average :
courseAvg = examAvg * 0.6 + projAvg * 0.4

Texas Summer Discovery Slideset 5: 15 Data Types and Input

Exercise: Grade Report with input

Notice that this code is identical to what we had before.
# Print the student ’s grade report :
print ()
print (" Grades for", student )
print (" Exam1 :", round (exam1Norm , 2))
print (" Exam2 :", round (exam2Norm , 2))
print (" Exam3 :", round (exam3Norm , 2))
print ("Exam average :", round (examAvg , 2))

print (" Proj1 :", round (proj1Norm , 2))
print (" Proj2 :", round (proj2Norm , 2))
print ("Proj average :", round (projAvg , 2))

print (" Course average :", round (courseAvg , 2))

Texas Summer Discovery Slideset 5: 16 Data Types and Input



Running the Program

> python Grade2 .py
Enter student name: Susie Q.
Enter Exam1 grade : 75
Enter Exam2 grade : 85
Enter Exam3 grade : 57
Enter Proj1 grade : 95
Enter Proj2 grade : 150

Grades for Susie Q.
Exam1 : 75.0
Exam2 : 94.44
Exam3 : 87.69

Exam average : 85.71
Proj1 : 95.0
Proj2 : 75.0

Proj average : 85.0
Course average : 85.43

Texas Summer Discovery Slideset 5: 17 Data Types and Input


