Booleans

Introduction to Programming in Python

Booleans and Conditionals

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

Last updated: June 4, 2021 at 11:04

Texas Summer Discovery Slideset 7: 1 Booleans and Conditionals

Using Booleans

>>> import math
>>> b = (30.0 < math.sqrt(1024))
>>> print(b)

True

>>> x =1 # statement

>>> x < 0 # boolean expression
False

>>> x >= -2 # boolean expression
True

>>> b = (x == 0) # statement containing

boolean expression
>>> print (b)
False

Texas Summer Discovery Slideset 7: 3 Booleans and Conditionals

So far we've been considering straight line code, meaning to do
one statement after another.

But often in programming, you need to ask a question, and do
different things based on the answer.

i

s 1 SERIES ey

George Boole

Boolean values are a useful
way to refer to the answer to a
yes/no question.

The Boolean constants are
the values: True, False. A
Boolean expression evaluates
to a Boolean value.

Texas Summer Discovery Slideset 7: 2 Booleans and Conditionals

Boolean Context

In a Boolean context—one that expects a Boolean value—False,
0, "" (the empty string), and None all stand for False and any
other value stands for True.

>>> bool("xyz")

True

>>> b00l(0.0)

False

>>> bool("")

False

>>> if 4: print("xyz")
Xyz

>>>if 4.2: print("xyz")
Xyz

>>> if "ab": print("xyz")
Xyz

boolean context

This is very useful in many programming situations.

Texas Summer Discovery Slideset 7: 4 Booleans and Conditionals

Comparison Operators One Way If Statements

The following comparison operators are useful for comparing

numeric values (or strings): It's often useful to be able to perform an action only if some
conditions is true.

Operator Meaning Example
< Less than % < 0 General form: /_)-\\\ o
<= Less than or equal x <=0 if boolean-expression: <<\G°f'dltl°“//%
> Greater than x>0 statement (s) ..
>= Greater than or equal x >= 0 Note the colon after the statement (s)
== Equal to x ==0 boolean-expression. All of the
I= Not equal to x!=0 statements must be indented

Each of these returns a Boolean value, True or False. the same amount. e of e

>>> import math if (y =0):

>>> x = 10 z=0x/73)

>>> (x == math.sqrt(100))

True

Texas Summer Discovery Slideset 7: 5 Booleans and Conditionals Texas Summer Discovery Slideset 7: 6 Booleans and Conditionals

If Statement Example Two-way If-else Statements

In file IfExample.py:

def main(): A two-way If-else statement executes one of two actions,

""" A pretty uninteresting function to illustrate depending on the value of a Boolean expression.
if statements. """

x = int(input ("Input an integer or O to stop: "))

if (x '= 0):
print("You entered", x, ". Thank you!'") General form:
main () if boolean-expression:
true—-case—-statement (S) statement (s) statement (s)
Would “if x:" have worked instead of “if (x !'= 0):"? else:
false-case-statement (s) i
> python IfExample.py rest of code

I i : .
nput an integer or 0 to stop: 3 Note the colons after the boolean-expression and after the else.
You entered 3. Thank you!

> python IfExample.py All of the statements in both if and else branches should be

Input an integer or O to stop: O indented the same amount.
>

Texas Summer Discovery Slideset 7: 7 Booleans and Conditionals Texas Summer Discovery Slideset 7: 8 Booleans and Conditionals

If-else Statement: Example Nested If Statements: Leap Year Example

In file ComputeCircleArea.py:

import math

def main():

""" Compute the area of a circle, given radius. """
radius = float(input ("Input radius: "))
if (radius >= 0):

area = math.pi * radius *x 2

print("A circle with radius", radius, \

"has area", round(area, 2))

else:

print ("Negative radius entered.")

main ()

> python ComputeCircleArea.py

Input radius: 4.3

A circle with radius 4.3 has area 58.09
> python ComputeCircleArea.py

Input radius: -3.2

Negative radius entered.

Texas Summer Discovery Slideset 7: 9 Booleans and Conditionals

Nested If Statements: Is Leap Year?

In file LeapYear.py:

def main():
""" Is entered year a leap year? """
year = int(input("Enter a year: "))
if (year % 4 == 0):
Year is a multiple of 4
if (year ¥ 100 == 0):
Year is a multiple of 4
and of 100.

if (year % 400 == 0):
IsLeapYear = True # What’s true here?
else:
IsLeapYear = False # What’s true here?
else:
IsLeapYear = True
else:
IsLeapYear = False # What’s true here?
if IsLeapYear:
print("Year", year, "is a leap year.")
else:
print("Year", year, "is not a leap year.")

The statements under an if can themselves be if statements.

For example: Suppose you want to determine whether a particular
year is a leap year. The algorithm is as follows:

Q If year is a multiple of 4, then it's a leap year;

Q unless it's a multiple of 100, and then it's not;

© unless it's also a multiple of 400, and then it is.

Isyear
divisible
by4?

Isyear
divisible
by 1007

Isyear
divisible
by 4007

LEAP
YEAR

No

NOTLEAP YEAR LEAP NOT LEAP YEAR
YEAR

Texas Summer Discovery Slideset 7: 10 Booleans and Conditionals

Leap Year

> python LeapYear.py

Enter a year: 2000

Year 2000 is a leap year.

> python LeapYear.py

Enter a year: 1900

Year 1900 is not a leap year.
> python LeapYear.py

Enter a year: 2004

Year 2004 is a leap year.

> python LeapYear.py

Enter a year: 2005

Year 2005 is not a leap year.

Texas Summer Discovery Slideset 7: 11 Booleans and Conditionals

Texas Summer Discovery Slideset 7 Booleans and Conditionals

Multiway if-elif-else Statements

If you have multiple options, you can use if-elif-else statements.

General Form: -

True Do
something

if boolean-expressionl:
statement (s)
elif boolean-expression2:

Elif

decision

statement (s) ‘
decision

Else do this...

You can have any number of elif branches with their conditions.
The else branch is optional.

ot

Do
something

elif boolean-expression3:

Do
something

else: # optional
statement (s)

Texas Summer Discovery Slideset 7: 13 Booleans and Conditionals

If-elif-else Example

> python LeapYear3.py

Enter a year: 2000

Year 2000 is a leap year.

> python LeapYear3.py

Enter a year: 2004

Year 2004 is a leap year.

> python LeapYear3.py

Enter a year: 1900

Year 1900 is not a leap year.
> python LeapYear3.py

Enter a year: 2005

Year 2005 is not a leap year.

Texas Summer Discovery Slideset 7: 15 Booleans and Conditionals

If-elif-else Example

In file LeapYear3.py:

def main():
Is this a leap year

year = int(input("Enter a year: "))

if (year 7 400 == 0):
IsLeapYear = True

elif (year % 100 == 0): # what’s true here?
IsLeapYear = False

elif (year % 4 == 0): # what’s true here?
IsLeapYear = True

else: # what’s true here?
IsLeapYear = False

Print result.

if IsLeapYear:
print("Year", year, "is a leap year.")

else:
print("Year", year, "is not a leap year.")

Notice that we could always replace elif with nested if-else
statements. But this is much more readable. Be careful with your
indentation!

Texas Summer Discovery Slideset 7: 14 Booleans and Conditionals

Logical Operators

Python has logical operators (and, or, not) that can be used to
make compound Boolean expressions.

not : logical negation
and : logical conjunction
or : logical disjunction

Operators and and or are always evaluated using short circuit
evaluation.

(x % 100 == 0) and not (x % 400 == 0)

Texas Summer Discovery Slideset 7: 16 Booleans and Conditionals

Short Circuit Evaluation Leap Years Revisited

Notice that (A and B) is False, if A is False; it doesn't matter Here's an easier way to do our Leap Year computation:

what B is. So there’s no need to evaluate B, if A is False! In file LeapYear2.py:

Also, (A or B) is True, if A is True; it doesn't matter what B is. So def main():
there’s no need to evaluate B, if A is True! """ Input a year and test whether it’s a leap year. """
year = int(input("Enter a year: "))
>>> x = 13 # What’s the logic of this assignment?
_ IsLeapYear = (year Y == 0) and \
>>>y_0 (not (year % 100 == 0) or (year % 400 == 0));
>>> legal = (y == 0 or x/y > 0)
. # Print the answer
>>>
pI‘lI‘lt(legal) if IsLeapYear:
True print("Year", year, "is a leap year.")
else:
print ("Year", year, "is not a leap year.")
Python doesn't evaluate B if evaluating A is sufficient to determine
. .. , in ()
the value of the expression. That's important sometimes. i

Booleans and Conditionals

Texas Summer Discovery Slideset 7: 17 Booleans and Conditionals Texas Summer Discovery Slideset 7: 18

Leap Years Revisited

> python LeapYear2.py

Enter a year: 2000

Year 2000 is a leap year.

> python LeapYear2.py

Enter a year: 1900

Year 1900 is not a leap year.
> python LeapYear2.py

Enter a year: 2004

Year 2004 is a leap year.

> python LeapYear2.py

Enter a year: 2005

Year 2005 is not a leap year.

Texas Summer Discovery Slideset 7: 19 Booleans and Conditionals

