
Introduction to Programming in Python
Booleans and Conditionals

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: June 4, 2021 at 11:04

Texas Summer Discovery Slideset 7: 1 Booleans and Conditionals

Booleans
So far we’ve been considering straight line code, meaning to do
one statement after another.

But often in programming, you need to ask a question, and do
different things based on the answer.

Boolean values are a useful
way to refer to the answer to a
yes/no question.

The Boolean constants are
the values: True, False. A
Boolean expression evaluates
to a Boolean value.

Texas Summer Discovery Slideset 7: 2 Booleans and Conditionals

Using Booleans

>>> import math
>>> b = (30.0 < math.sqrt(1024))
>>> print(b)
True
>>> x = 1 # statement
>>> x < 0 # boolean expression
False
>>> x >= -2 # boolean expression
True
>>> b = (x == 0) # statement containing

boolean expression
>>> print (b)
False

Texas Summer Discovery Slideset 7: 3 Booleans and Conditionals

Boolean Context
In a Boolean context—one that expects a Boolean value—False,
0, "" (the empty string), and None all stand for False and any
other value stands for True.
>>> bool("xyz")
True
>>> bool (0.0)
False
>>> bool("")
False
>>> if 4: print("xyz") # boolean context
xyz
>>>if 4.2: print("xyz")
xyz
>>> if "ab": print("xyz")
xyz

This is very useful in many programming situations.
Texas Summer Discovery Slideset 7: 4 Booleans and Conditionals

Comparison Operators
The following comparison operators are useful for comparing
numeric values (or strings):

Operator Meaning Example
< Less than x < 0
<= Less than or equal x <= 0
> Greater than x > 0
>= Greater than or equal x >= 0
== Equal to x == 0
!= Not equal to x != 0

Each of these returns a Boolean value, True or False.
>>> import math
>>> x = 10
>>> (x == math.sqrt(100))
True

Texas Summer Discovery Slideset 7: 5 Booleans and Conditionals

One Way If Statements

It’s often useful to be able to perform an action only if some
conditions is true.

General form:
if boolean-expression:

statement(s)
Note the colon after the
boolean-expression. All of the
statements must be indented
the same amount.

if (y != 0):
z = (x / y)

Texas Summer Discovery Slideset 7: 6 Booleans and Conditionals

If Statement Example

In file IfExample.py:
def main ():

""" A pretty uninteresting function to illustrate
if statements . """
x = int(input (" Input an integer or 0 to stop: "))
if (x != 0):

print ("You entered ", x, ". Thank you!")

main ()

Would “if x:” have worked instead of “if (x != 0):”?

> python IfExample .py
Input an integer or 0 to stop: 3
You entered 3. Thank you!
> python IfExample .py
Input an integer or 0 to stop: 0
>

Texas Summer Discovery Slideset 7: 7 Booleans and Conditionals

Two-way If-else Statements

A two-way If-else statement executes one of two actions,
depending on the value of a Boolean expression.

General form:
if boolean-expression:

true-case-statement(s)
else:

false-case-statement(s)

Note the colons after the boolean-expression and after the else.
All of the statements in both if and else branches should be
indented the same amount.

Texas Summer Discovery Slideset 7: 8 Booleans and Conditionals

If-else Statement: Example
In file ComputeCircleArea.py:
import math

def main ():
""" Compute the area of a circle , given radius . """
radius = float (input (" Input radius : "))
if (radius >= 0):

area = math.pi * radius ** 2
print ("A circle with radius ", radius , \

"has area", round (area , 2))
else:

print (" Negative radius entered .")

main ()

> python ComputeCircleArea .py
Input radius : 4.3
A circle with radius 4.3 has area 58.09
> python ComputeCircleArea .py
Input radius : -3.2
Negative radius entered .

Texas Summer Discovery Slideset 7: 9 Booleans and Conditionals

Nested If Statements: Leap Year Example

The statements under an if can themselves be if statements.

For example: Suppose you want to determine whether a particular
year is a leap year. The algorithm is as follows:

1 If year is a multiple of 4, then it’s a leap year;
2 unless it’s a multiple of 100, and then it’s not;
3 unless it’s also a multiple of 400, and then it is.

Texas Summer Discovery Slideset 7: 10 Booleans and Conditionals

Nested If Statements: Is Leap Year?

In file LeapYear.py:
def main ():

""" Is entered year a leap year? """
year = int(input (" Enter a year: "))
if (year % 4 == 0):

Year is a multiple of 4
if (year % 100 == 0):

Year is a multiple of 4
and of 100.
if (year % 400 == 0):

IsLeapYear = True # What ’s true here?
else:

IsLeapYear = False # What ’s true here?
else:

IsLeapYear = True
else:

IsLeapYear = False # What ’s true here?
if IsLeapYear :

print ("Year", year , "is a leap year.")
else:

print ("Year", year , "is not a leap year.")

Texas Summer Discovery Slideset 7: 11 Booleans and Conditionals

Leap Year

> python LeapYear .py
Enter a year: 2000
Year 2000 is a leap year.
> python LeapYear .py
Enter a year: 1900
Year 1900 is not a leap year.
> python LeapYear .py
Enter a year: 2004
Year 2004 is a leap year.
> python LeapYear .py
Enter a year: 2005
Year 2005 is not a leap year.

Texas Summer Discovery Slideset 7: 12 Booleans and Conditionals

Multiway if-elif-else Statements

If you have multiple options, you can use if-elif-else statements.

General Form:

if boolean-expression1:
statement(s)

elif boolean-expression2:
statement(s)

elif boolean-expression3:
...

else: # optional
statement(s)

You can have any number of elif branches with their conditions.
The else branch is optional.

Texas Summer Discovery Slideset 7: 13 Booleans and Conditionals

If-elif-else Example
In file LeapYear3.py:
def main ():

Is this a leap year
year = int(input (" Enter a year: "))
if (year % 400 == 0):

IsLeapYear = True
elif (year % 100 == 0): # what ’s true here?

IsLeapYear = False
elif (year % 4 == 0): # what ’s true here?

IsLeapYear = True
else: # what ’s true here?

IsLeapYear = False
Print result .
if IsLeapYear :

print ("Year", year , "is a leap year.")
else:

print ("Year", year , "is not a leap year.")

Notice that we could always replace elif with nested if-else
statements. But this is much more readable. Be careful with your
indentation!

Texas Summer Discovery Slideset 7: 14 Booleans and Conditionals

If-elif-else Example

> python LeapYear3 .py
Enter a year: 2000
Year 2000 is a leap year.
> python LeapYear3 .py
Enter a year: 2004
Year 2004 is a leap year.
> python LeapYear3 .py
Enter a year: 1900
Year 1900 is not a leap year.
> python LeapYear3 .py
Enter a year: 2005
Year 2005 is not a leap year.

Texas Summer Discovery Slideset 7: 15 Booleans and Conditionals

Logical Operators

Python has logical operators (and, or, not) that can be used to
make compound Boolean expressions.

not : logical negation
and : logical conjunction

or : logical disjunction
Operators and and or are always evaluated using short circuit
evaluation.

(x % 100 == 0) and not (x % 400 == 0)

Texas Summer Discovery Slideset 7: 16 Booleans and Conditionals

Short Circuit Evaluation

Notice that (A and B) is False, if A is False; it doesn’t matter
what B is. So there’s no need to evaluate B, if A is False!

Also, (A or B) is True, if A is True; it doesn’t matter what B is. So
there’s no need to evaluate B, if A is True!

>>> x = 13
>>> y = 0
>>> legal = (y == 0 or x/y > 0)
>>> print(legal)
True

Python doesn’t evaluate B if evaluating A is sufficient to determine
the value of the expression. That’s important sometimes.

Texas Summer Discovery Slideset 7: 17 Booleans and Conditionals

Leap Years Revisited

Here’s an easier way to do our Leap Year computation:

In file LeapYear2.py:
def main ():

""" Input a year and test whether it ’s a leap year. """
year = int(input (" Enter a year: "))

What ’s the logic of this assignment ?
IsLeapYear = (year % 4 == 0) and \

(not (year % 100 == 0) or (year % 400 == 0));

Print the answer
if IsLeapYear :

print ("Year", year , "is a leap year.")
else:

print ("Year", year , "is not a leap year.")

main ()

Texas Summer Discovery Slideset 7: 18 Booleans and Conditionals

Leap Years Revisited

> python LeapYear2 .py
Enter a year: 2000
Year 2000 is a leap year.
> python LeapYear2 .py
Enter a year: 1900
Year 1900 is not a leap year.
> python LeapYear2 .py
Enter a year: 2004
Year 2004 is a leap year.
> python LeapYear2 .py
Enter a year: 2005
Year 2005 is not a leap year.

Texas Summer Discovery Slideset 7: 19 Booleans and Conditionals

