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Using Booleans

>>> import math
>>> b = ( 30.0 < math.sqrt( 1024 ))
>>> print( b )

True

>>> x =1 # statement

>>> x < 0 # boolean expression
False

>>> x >= -2 # boolean expression
True

>>> b = (x == 0 ) # statement containing

# boolean expression
>>> print (b)
False
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So far we've been considering straight line code, meaning to do
one statement after another.

But often in programming, you need to ask a question, and do
different things based on the answer.

i
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George Boole

Boolean values are a useful
way to refer to the answer to a
yes/no question.

The Boolean constants are
the values: True, False. A
Boolean expression evaluates
to a Boolean value.
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Boolean Context

In a Boolean context—one that expects a Boolean value—False,
0, "" (the empty string), and None all stand for False and any
other value stands for True.

>>> bool("xyz")

True

>>> b00l(0.0)

False

>>> bool("")

False

>>> if 4: print("xyz")
Xyz

>>>if 4.2: print("xyz")
Xyz

>>> if "ab": print("xyz")
Xyz

# boolean context

This is very useful in many programming situations.
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Comparison Operators One Way If Statements

The following comparison operators are useful for comparing

numeric values (or strings): It's often useful to be able to perform an action only if some
conditions is true.

Operator Meaning Example
< Less than % < 0 General form: /_)-\\\ o
<= Less than or equal x <=0 if boolean-expression: <<\G°f'dltl°“//%
> Greater than x>0 statement (s) ..
>= Greater than or equal x >= 0 Note the colon after the statement (s)
== Equal to x ==0 boolean-expression. All of the
I= Not equal to x!=0 statements must be indented

Each of these returns a Boolean value, True or False. the same amount. e of e

>>> import math if (y =0 ):

>>> x = 10 z=0x/73)

>>> ( x == math.sqrt( 100 ))

True
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If Statement Example Two-way If-else Statements

In file IfExample.py:

def main(): A two-way If-else statement executes one of two actions,

""" A pretty uninteresting function to illustrate depending on the value of a Boolean expression.
if statements. """

x = int( input ("Input an integer or O to stop: "))

if (x '= 0 ):
print( "You entered", x, ". Thank you!'") General form:
main () if boolean-expression:
true—-case—-statement (S) statement (s) statement (s)
Would “if x:" have worked instead of “if ( x !'= 0 ):"? else:
false-case-statement (s) i
> python IfExample.py rest of code

I i : .
nput an integer or 0 to stop: 3 Note the colons after the boolean-expression and after the else.
You entered 3. Thank you!

> python IfExample.py All of the statements in both if and else branches should be

Input an integer or O to stop: O indented the same amount.
>
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If-else Statement: Example Nested If Statements: Leap Year Example

In file ComputeCircleArea.py:

import math

def main():

""" Compute the area of a circle, given radius. """
radius = float( input ("Input radius: ") )
if ( radius >= 0 ):

area = math.pi * radius *x 2

print( "A circle with radius", radius, \

"has area", round(area, 2) )

else:

print ( "Negative radius entered.")

main ()

> python ComputeCircleArea.py

Input radius: 4.3

A circle with radius 4.3 has area 58.09
> python ComputeCircleArea.py

Input radius: -3.2

Negative radius entered.
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Nested If Statements: Is Leap Year?

In file LeapYear.py:

def main():
""" Is entered year a leap year? """
year = int( input("Enter a year: ") )
if ( year % 4 == 0 ):
# Year is a multiple of 4
if ( year ¥ 100 == 0 ):
# Year is a multiple of 4
# and of 100.

if ( year % 400 == 0 ):
IsLeapYear = True # What’s true here?
else:
IsLeapYear = False # What’s true here?
else:
IsLeapYear = True
else:
IsLeapYear = False # What’s true here?
if IsLeapYear:
print( "Year", year, "is a leap year." )
else:
print( "Year", year, "is not a leap year.")

The statements under an if can themselves be if statements.

For example: Suppose you want to determine whether a particular
year is a leap year. The algorithm is as follows:

Q If year is a multiple of 4, then it's a leap year;

Q unless it's a multiple of 100, and then it's not;

© unless it's also a multiple of 400, and then it is.

Isyear
divisible
by4?

Isyear
divisible
by 1007

Isyear
divisible
by 4007

LEAP
YEAR

No

NOTLEAP YEAR LEAP NOT LEAP YEAR
YEAR
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Leap Year

> python LeapYear.py

Enter a year: 2000

Year 2000 is a leap year.

> python LeapYear.py

Enter a year: 1900

Year 1900 is not a leap year.
> python LeapYear.py

Enter a year: 2004

Year 2004 is a leap year.

> python LeapYear.py

Enter a year: 2005

Year 2005 is not a leap year.
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Multiway if-elif-else Statements

If you have multiple options, you can use if-elif-else statements.

General Form: -

True Do
something

if boolean-expressionl:
statement (s)
elif boolean-expression2:

Elif

decision

statement (s) ‘
decision

Else do this...

You can have any number of elif branches with their conditions.
The else branch is optional.

ot

Do
something

elif boolean-expression3:

Do
something

else: # optional
statement (s)
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If-elif-else Example

> python LeapYear3.py

Enter a year: 2000

Year 2000 is a leap year.

> python LeapYear3.py

Enter a year: 2004

Year 2004 is a leap year.

> python LeapYear3.py

Enter a year: 1900

Year 1900 is not a leap year.
> python LeapYear3.py

Enter a year: 2005

Year 2005 is not a leap year.

Texas Summer Discovery Slideset 7: 15 Booleans and Conditionals

If-elif-else Example

In file LeapYear3.py:

def main():
# Is this a leap year

year = int( input("Enter a year: ") )

if ( year 7 400 == 0 ):
IsLeapYear = True

elif ( year % 100 == 0 ): # what’s true here?
IsLeapYear = False

elif ( year % 4 == 0 ): # what’s true here?
IsLeapYear = True

else: # what’s true here?
IsLeapYear = False

# Print result.

if IsLeapYear:
print( "Year", year, "is a leap year." )

else:
print( "Year", year, "is not a leap year.")

Notice that we could always replace elif with nested if-else
statements. But this is much more readable. Be careful with your
indentation!
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Logical Operators

Python has logical operators (and, or, not) that can be used to
make compound Boolean expressions.

not : logical negation
and : logical conjunction
or : logical disjunction

Operators and and or are always evaluated using short circuit
evaluation.

(x % 100 == 0 ) and not ( x % 400 == 0 )
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Short Circuit Evaluation Leap Years Revisited

Notice that (A and B) is False, if A is False; it doesn't matter Here's an easier way to do our Leap Year computation:

what B is. So there’s no need to evaluate B, if A is False! In file LeapYear2.py:

Also, (A or B) is True, if A is True; it doesn't matter what B is. So def main():
there’s no need to evaluate B, if A is True! """ Input a year and test whether it’s a leap year. """
year = int( input("Enter a year: ") )
>>> x = 13 # What’s the logic of this assignment?
_ IsLeapYear = ( year Y == 0 ) and \
>>>y_0 ( not ( year % 100 == 0 ) or ( year % 400 == 0 ) );
>>> legal = (y == 0 or x/y > 0 )
. # Print the answer
>>>
pI‘lI‘lt( legal ) if IsLeapYear:
True print( "Year", year, "is a leap year." )
else:
print ( "Year", year, "is not a leap year.")
Python doesn't evaluate B if evaluating A is sufficient to determine
. .. , in ()
the value of the expression. That's important sometimes. i

Booleans and Conditionals
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Leap Years Revisited

> python LeapYear2.py

Enter a year: 2000

Year 2000 is a leap year.

> python LeapYear2.py

Enter a year: 1900

Year 1900 is not a leap year.
> python LeapYear2.py

Enter a year: 2004

Year 2004 is a leap year.

> python LeapYear2.py

Enter a year: 2005

Year 2005 is not a leap year.
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