
Introduction to Programming in Python
Loops

Dr. Bill Young
Department of Computer Science

University of Texas at Austin

Last updated: June 4, 2021 at 11:04

Texas Summer Discovery Slideset 8: 1 Loops

Repetitive Activity

Often we need to do some (program) activity numerous times:
So you might as well use cleverness to do it. That’s what loops are
for.

It doesn’t have to be the exact same thing over and over.

Texas Summer Discovery Slideset 8: 2 Loops

While Loop

One way is to use a while loop. It is typical to use a while loop if
you don’t know exactly how many times the loop should execute.

General form:
while condition:

statement(s)

Meaning: as long as the
condition remains true, execute
the statements.

As usual, all of the statements
in the body must be indented
the same amount.

Texas Summer Discovery Slideset 8: 3 Loops

While Loop

In file WhileExample.py:
COUNT = 500
STRING = "I will not throw paper airplanes in class ."

def main ():
""" Print STRING COUNT times . """
i = 0
while (i < COUNT):

print (STRING)
i += 1

main ()

> python WhileExample .py
I will not throw paper airplanes in class .
I will not throw paper airplanes in class .

...
I will not throw paper airplanes in class .

Texas Summer Discovery Slideset 8: 4 Loops

While Loop Example

Exercise: Find and print all of the positive integers less than or
equal to 100 that are divisible by both 2 and 3.

In file DivisibleBy2and3.py:
def main ():

num = 1
while (num <= 100):

if (num % 2 == 0 and num % 3 == 0):
print (num , end=" ")

num += 1
print ()

main ()

Running the program:
> python DivisibleBy2and3 .py
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
>

Texas Summer Discovery Slideset 8: 5 Loops

While Loop Example

Exercise: Find and print all of the positive integers less than or
equal to 100 that are divisible by both 2 and 3.

In file DivisibleBy2and3.py:
def main ():

num = 1
while (num <= 100):

if (num % 2 == 0 and num % 3 == 0):
print (num , end=" ")

num += 1
print ()

main ()

Running the program:
> python DivisibleBy2and3 .py
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
>

Texas Summer Discovery Slideset 8: 6 Loops

Another While Loop Example: Test Primality

An integer is prime if it has no
positive integer divisors except 1 and
itself.

To test whether an arbitrary integer n
is prime, see if any number in
[2 ... n-1], divides it.

You couldn’t do that in straight line code without knowing n in
advance. Why not?

Even then it would be really tedious if n is very large.

Texas Summer Discovery Slideset 8: 7 Loops

isPrime Loop Example

In file IsPrime.py:
def main ():

""" See if an integer entered is prime . """
Can you spot the inefficiencies in this?
num = int(input (" Enter an integer : "))

if (num < 2):
print (num , "is not prime ")

elif (num == 2):
print ("2 is prime ")

else:
divisor = 2
while (divisor < num):

Keep repeating this block until condition becomes
False , or exit if we find num is not prime .
if (num % divisor == 0):

print (num , "is not prime ")
return # exit the function

else:
divisor += 1

print (num , "is prime ")

Texas Summer Discovery Slideset 8: 8 Loops

isPrime Loop Example

> python IsPrime .py
Enter an integer : 53
53 is prime
> python IsPrime .py
Enter an integer : 54
54 is not prime

It works, though it’s pretty inefficient. If a number is prime, we
test every possible divisor in [2 ... n-1].

We don’t actually need the special test for 2. Think about
why that is.
If n is not prime, it will have a divisor less than or equal to

√
n.

There’s no need to test any even divisor except 2.

Exercise: Try for yourself writing a better version of this function.

Texas Summer Discovery Slideset 8: 9 Loops

For Loop

In a for loop, you typically know how many times you’ll execute.

General form:
for var in sequence:

statement(s)

Meaning: assign each element
of sequence in turn to var and
execute the statements.

As usual, all of the statements
in the body must be indented
the same amount.

Texas Summer Discovery Slideset 8: 10 Loops

What’s a Sequence?

A Python sequence holds multiple items stored one after another.

seq = [2, 3, 5, 7, 11, 13] # a list

sum = 0
for item in seq:

sum += item

print("The sum of the sequence is:", sum)

Texas Summer Discovery Slideset 8: 11 Loops

Range Function

The range function is a good way to generate a sequence.

range(a, b) : denotes the sequence a, a+1, ..., b-1.
range(b) : is the same as range(0, b).

range(a, b, c) : generates a, a+c, a+2c,, b’, where
b’ is the last value < b.

Texas Summer Discovery Slideset 8: 12 Loops

Range Examples

Expression Result
range(3, 6) 3, 4, 5
range(3) 0, 1, 2
range(0, 11, 3) 0, 3, 6, 9
range(11, 0, -3) 11, 8, 5, 2

Exercise: Explain why each of these turned out as it did.
Texas Summer Discovery Slideset 8: 13 Loops

For Example with Range

Exercise: Find and print all of the positive integers less than or
equal to 100 that are divisible by both 2 and 3, using a for loop.

def main ():
""" Print integers in [1..100] divisible by both 2 and 3.

"""
for num in range (1, 101):

if (num % 2 == 0 and num % 3 == 0):
print (num , end=" ")

print ()

1 Why were the range limits 1 and 101?
2 What does the end=" " do? Would end="" work as well?
3 Why was the final print() there?

> python DivisibleBy2And3For .py
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

Texas Summer Discovery Slideset 8: 14 Loops

For Example with Range

Exercise: Find and print all of the positive integers less than or
equal to 100 that are divisible by both 2 and 3, using a for loop.

def main ():
""" Print integers in [1..100] divisible by both 2 and 3.

"""
for num in range (1, 101):

if (num % 2 == 0 and num % 3 == 0):
print (num , end=" ")

print ()

1 Why were the range limits 1 and 101?
2 What does the end=" " do? Would end="" work as well?
3 Why was the final print() there?

> python DivisibleBy2And3For .py
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

Texas Summer Discovery Slideset 8: 15 Loops

Another For Loop Example

Suppose you want to print a table of the powers of 2 up to 2n.

In file PowersOf2.py:
def main ():

""" Print a table of powers of 2 up to 2**n,
where n is entered by the user. """

num = int(input (" Enter an integer : "))

for power in range (num + 1): # Why num + 1
print (power , "\t", 2 ** power)

Why does the range go to num + 1?

Texas Summer Discovery Slideset 8: 16 Loops

Another For Loop Example

> python PowersOf2 .py
Enter an integer : 16
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536

Texas Summer Discovery Slideset 8: 17 Loops

Break and Continue

Two useful commands in loops (while or for) are:

break: exit the loop;
continue: exit the current iteration, but continue with the loop.

""" Square user inputs until a 0 is entered . """
while (True):

num = int(input (" Enter an integer or 0 to stop: "))
if num == 0:

break
else:

print (num ** 2)

""" Print all numbers < 100 that are not multiples of 5. """
for num in range (100):

if num % 5 == 0:
continue

else:
print (num)

Texas Summer Discovery Slideset 8: 18 Loops

Nested Loops

The body of while loops and for loops contain arbitrary
statements, including other loops.

Suppose we want to compute and print out a multiplication table
like the following:

Multiplication Table
| 1 2 3 4 5 6 7 8 9

--
1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5 | 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

Texas Summer Discovery Slideset 8: 19 Loops

Multiplication Table

Multiplication Table
| 1 2 3 4 5 6 7 8 9

--
1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18

....
9 | 9 18 27 36 45 54 63 72 81

Here’s an algorithm to do this:
1 How many columns/rows in the table?
2 Print the header information.
3 For each row i:

1 Print i.
2 For each column j: compute and print (i * j).
3 Go to the next row.

This is easily coded using nested for loops.
Texas Summer Discovery Slideset 8: 20 Loops

Nested Loops
Print the header:

Multiplication Table
| 1 2 3 4 5 6 7 8 9

--

In file MultiplicationTable.py:
Defines the size of the table + 1.
LIMIT = 10

def main ():
""" Print a multiplication table to LIMIT - 1. """
print (" Multiplication Table ")
Display the column headers .
print (" |", end = "")
for j in range (1, LIMIT):

print (format (j, "4d"), end = "")
print () # jump to a new line
Print line to separate header from body of the table .
print (" --")

Texas Summer Discovery Slideset 8: 21 Loops

Nested Loops

This continues our multiplication example.

1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18

....
9 | 9 18 27 36 45 54 63 72 81

Display table body
for i in range (1, LIMIT):

print (format (i, "3d"), "|", end = "")
for j in range (1, LIMIT):

Display the product and align properly
print (format (i*j, "4d"), end = "")

print ()

main ()

Texas Summer Discovery Slideset 8: 22 Loops

Nested Loops Example

> python MultiplicationTable .py
Multiplication Table

1 2 3 4 5 6 7 8 9

1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5 | 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

Notice that if you want a bigger or smaller table, you only have to
change LIMIT in the code. But what would be wrong?

Texas Summer Discovery Slideset 8: 23 Loops

