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Repetitive Activity

Often we need to do some (program) activity numerous times:
So you might as well use cleverness to do it. That’s what loops are
for.

It doesn’t have to be the exact same thing over and over.
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While Loop

One way is to use a while loop. It is typical to use a while loop if
you don’t know exactly how many times the loop should execute.

General form:
while condition:

statement(s)

Meaning: as long as the
condition remains true, execute
the statements.

As usual, all of the statements
in the body must be indented
the same amount.
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While Loop

In file WhileExample.py:
COUNT = 500
STRING = "I will not throw paper airplanes in class ."

def main ():
""" Print STRING COUNT times . """
i = 0
while ( i < COUNT ):

print ( STRING )
i += 1

main ()

> python WhileExample .py
I will not throw paper airplanes in class .
I will not throw paper airplanes in class .

...
I will not throw paper airplanes in class .
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While Loop Example

Exercise: Find and print all of the positive integers less than or
equal to 100 that are divisible by both 2 and 3.

In file DivisibleBy2and3.py:
def main ():

num = 1
while (num <= 100):

if (num % 2 == 0 and num % 3 == 0):
print ( num , end=" " )

num += 1
print ()

main ()

Running the program:
> python DivisibleBy2and3 .py
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
>
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Another While Loop Example: Test Primality

An integer is prime if it has no
positive integer divisors except 1 and
itself.

To test whether an arbitrary integer n
is prime, see if any number in
[2 ... n-1], divides it.

You couldn’t do that in straight line code without knowing n in
advance. Why not?

Even then it would be really tedious if n is very large.
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isPrime Loop Example

In file IsPrime.py:
def main ():

""" See if an integer entered is prime . """
# Can you spot the inefficiencies in this?
num = int( input (" Enter an integer : ") )

if ( num < 2 ):
print (num , "is not prime ")

elif ( num == 2 ):
print ("2 is prime ")

else:
divisor = 2
while ( divisor < num ):

# Keep repeating this block until condition becomes
# False , or exit if we find num is not prime .
if ( num % divisor == 0 ):

print ( num , "is not prime " )
return # exit the function

else:
divisor += 1

print (num , "is prime " )
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isPrime Loop Example

> python IsPrime .py
Enter an integer : 53
53 is prime
> python IsPrime .py
Enter an integer : 54
54 is not prime

It works, though it’s pretty inefficient. If a number is prime, we
test every possible divisor in [2 ... n-1].

We don’t actually need the special test for 2. Think about
why that is.
If n is not prime, it will have a divisor less than or equal to

√
n.

There’s no need to test any even divisor except 2.

Exercise: Try for yourself writing a better version of this function.
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For Loop

In a for loop, you typically know how many times you’ll execute.

General form:
for var in sequence:

statement(s)

Meaning: assign each element
of sequence in turn to var and
execute the statements.

As usual, all of the statements
in the body must be indented
the same amount.
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What’s a Sequence?

A Python sequence holds multiple items stored one after another.

seq = [2, 3, 5, 7, 11, 13] # a list

sum = 0
for item in seq:

sum += item

print( "The sum of the sequence is:", sum )
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Range Function

The range function is a good way to generate a sequence.

range(a, b) : denotes the sequence a, a+1, ..., b-1.
range(b) : is the same as range(0, b).

range(a, b, c) : generates a, a+c, a+2c, ...., b’, where
b’ is the last value < b.
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Range Examples

Expression Result
range(3, 6) 3, 4, 5
range(3) 0, 1, 2
range(0, 11, 3) 0, 3, 6, 9
range(11, 0, -3) 11, 8, 5, 2

Exercise: Explain why each of these turned out as it did.
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For Example with Range

Exercise: Find and print all of the positive integers less than or
equal to 100 that are divisible by both 2 and 3, using a for loop.

def main ():
""" Print integers in [1..100] divisible by both 2 and 3.

"""
for num in range (1, 101):

if (num % 2 == 0 and num % 3 == 0):
print ( num , end=" " )

print ()

1 Why were the range limits 1 and 101?
2 What does the end=" " do? Would end="" work as well?
3 Why was the final print() there?

> python DivisibleBy2And3For .py
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
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Another For Loop Example

Suppose you want to print a table of the powers of 2 up to 2n.

In file PowersOf2.py:
def main ():

""" Print a table of powers of 2 up to 2**n,
where n is entered by the user. """

num = int( input (" Enter an integer : ") )

for power in range (num + 1): # Why num + 1
print ( power , "\t", 2 ** power )

Why does the range go to num + 1?
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Another For Loop Example

> python PowersOf2 .py
Enter an integer : 16
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536
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Break and Continue

Two useful commands in loops (while or for) are:

break: exit the loop;
continue: exit the current iteration, but continue with the loop.

""" Square user inputs until a 0 is entered . """
while (True):

num = int( input ( " Enter an integer or 0 to stop: " ))
if num == 0:

break
else:

print ( num ** 2 )

""" Print all numbers < 100 that are not multiples of 5. """
for num in range ( 100 ):

if num % 5 == 0:
continue

else:
print ( num )
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Nested Loops

The body of while loops and for loops contain arbitrary
statements, including other loops.

Suppose we want to compute and print out a multiplication table
like the following:

Multiplication Table
| 1 2 3 4 5 6 7 8 9

------------------------------------------
1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5 | 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81
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Multiplication Table

Multiplication Table
| 1 2 3 4 5 6 7 8 9

------------------------------------------
1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18

....
9 | 9 18 27 36 45 54 63 72 81

Here’s an algorithm to do this:
1 How many columns/rows in the table?
2 Print the header information.
3 For each row i:

1 Print i.
2 For each column j: compute and print (i * j).
3 Go to the next row.

This is easily coded using nested for loops.
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Nested Loops
Print the header:

Multiplication Table
| 1 2 3 4 5 6 7 8 9

------------------------------------------

In file MultiplicationTable.py:
# Defines the size of the table + 1.
LIMIT = 10

def main ():
""" Print a multiplication table to LIMIT - 1. """
print (" Multiplication Table ")
# Display the column headers .
print (" |", end = "")
for j in range (1, LIMIT ):

print ( format (j, "4d"), end = "")
print () # jump to a new line
# Print line to separate header from body of the table .
print (" ------------------------------------------")
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Nested Loops

This continues our multiplication example.

1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18

....
9 | 9 18 27 36 45 54 63 72 81

# Display table body
for i in range (1, LIMIT ):

print ( format (i, "3d"), "|", end = "")
for j in range (1, LIMIT ):

# Display the product and align properly
print ( format ( i*j, "4d"), end = "")

print ()

main ()
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Nested Loops Example

> python MultiplicationTable .py
Multiplication Table

| 1 2 3 4 5 6 7 8 9
------------------------------------------

1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5 | 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

Notice that if you want a bigger or smaller table, you only have to
change LIMIT in the code. But what would be wrong?
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