
Coordinated Management: Power, Performance, Energy, and
Temperature

Heather Hanson⋆ Stephen W. Keckler

Computer Architecture and Technology Laboratory
cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Department of Computer Sciences
⋆Department of Electrical and Computer Engineering

The University of Texas at Austin

IBM Technical Contact : Rob Bell, Jr.

Abstract

We are developing a next-generation power manager
that supports high performance within the constraints of
limited power, energy, and temperature levels. To date,
we have developed simulation infrastructure to model a
technology-scaled version of an Alpha 21364 processor and
have added three independent management techniques to
the simulator model. One technique dynamically scales fre-
quency and voltage settings. Another technique, pipeline
throttling, restricts the rate of integer instruction issue. The
third technique reduces leakage power in caches while re-
taining memory contents. We are currently using the sim-
ulation infrastructure to gauge the effect of management
techniques. This report provides an overview of our re-
search project and summarizes the current status of this
work.

1 Introduction

Effective power management is crucial to sustain future
generations of high-performance chips as the power liabil-
ity per transistor grows and Moore’s Law integration trends
offer more transistors per die each generation. We are devel-
oping a next-generation processor manager that coordinates
a multitude of management options to ensure safe operation
while enabling high throughput and performance.

1.1 Coordinated Management

The coordinated manager’s central component is a multi-
criteria optimization algorithm that sorts priorities andbal-
ances conflicting goals for performance, power, energy, and

temperature. The manager will select a goal, such as “maxi-
mum performance within fixed temperature and energy lim-
its” and enable a coherent set of management mechanisms
to achieve the goal. The closed-loop feedback system be-
tween the manager and on-die sensors and performance
counters will provide continual updates on system status,
allowing the manager to intelligently tune its directives to
achieve the desired response. The manager will track sys-
tem behavior and shift goal objectives in synchrony with
changing application demands and energy resources.

A hierarchy of intelligence gathering and processing
components in the manager will distribute decisions accord-
ing to required response time: quick response for phenom-
ena with shorter time constants, such as current spikes in the
power distribution network, and longer intervals between
decisions for slow-moving trends like gradual chip warm-
ing. With coordinated information from multiple sources
and a goal-driven algorithm, the manager can adapt to the
system environment and push the operating conditions to
the edge of acceptable limits [5].

1.2 Infrastructure

The initial phase of the research project focused on
building simulation infrastructure that models and monitors
processor behavior under a range of management condi-
tions. We extended our existing simulation infrastructure
reported in [5] to include temperature dependence and a
static power model and upgraded the cache system to in-
clude a large on-die L2 cache, with a power model based
on the Alpha 21364. We built three independent manage-
ment techniques into the simulator model. First, dynamic
frequency and voltage scaling controls activity through-
out the chip. A second technique, pipeline throttling, re-

stricts the rate of integer instruction issue, causing local-
ized changes in integer execution units as well as down-
stream effects throughout the pipeline. The third technique,
a cache sleep mode, reduces leakage power in caches while
retaining memory contents. The cache sleep mode targets
static power in the large portion of the die devoted to SRAM
structures.

This document summarizes our current status in the in-
frastructure development for a next-generation power man-
ager. Section 2 describes our simulation infrastructure in
detail and Section 3 presents preliminary experimental data.
Section 4 concludes this status report with a summary of
completed research and our plans for future work.

2 Simulation Infrastructure

We have developed simulation infrastructure to estimate
performance, power, energy, and temperature throughout
program execution in order to evaluate the effects of man-
agement control.

2.1 Processor Model

The base simulator for this research project is
sim-alpha, a validated microarchitectural performance
simulator developed in our research group [3] that mod-
els behavior of the Alpha 21264 processor. We have ex-
tended the simulator with additional components to mea-
sure power and temperature. In previous work [7], we
added the Wattch [2] dynamic power estimator to the sim-
alpha simulator. We augmented the power models to match
the Alpha 21264’s components for separate load and store
queues, 64-bit data path, I/O pins, a system interface, and
low-power ALU result buses. For this project, we extended
the model to include a large level-2 cache based on the Al-
pha 21364 processor [4].

For temperature estimates, we had incorporated the
HotSpot [10] temperature estimator, which models thermal
resistance and capacitance as electrical resistance and ca-
pacitance in a three-dimensional model of the chip. As
the Wattch-based power estimator calculates power during a
simulation, the HotSpot module reads the power consumed
over a specified time period (10,000 cycles) to calculate the
temperature for each unit in the chip’s floorplan. We mon-
itor each unit’s temperatures to find the “hotspots” during
program execution. It is possible that the hotspots are over-
estimated in this simulator version as a result of temperature
rising too quickly. We are in the process of confirming the
accuracy of coefficients and time constants for this system.

We built a static power model based on the 2003
ITRS projected gate and subthreshold leakage cur-
rent for high-performance devices [6]. The static
power model incorporates two types of transistors,

a high-leakage/high-performance transistor and a low-
leakage/lower-performance device. The high-leakage value
corresponds to thehp90 high-performance device specified
in the ITRS 2003 roadmap and the lower leakage value is
a fraction of the high leakage mode. Configuration param-
eters determine the percent of high/low leakage transistors
in caches and logic units and can be varied to create a wide
range of leakage conditions. The leakage power per mi-
croarchitectural unit is based on the unit’s area and an esti-
mate of transistor density, and is scaled with temperature to
reflect greater leakage current at higher operating tempera-
tures.

2.2 Simulated Processor Configuration

For baseline simulations, the simulator is configured to
model a contemporary high-performance processor. Table
1 lists simulation parameters for the baseline configuration.
The microarchitectural components are based on the Alpha
21364 processor, with modifications to the memory hier-
archy. The Alpha 21364 was designed to use RAMBUS
memory; the simulator uses a standard DRAM model. The
simulated L2 cache is 8-way set associative cache with 1MB
capacity, rather than the 1.75MB 7-way cache design of the
Alpha L2 cache. Both the L2 and memory adaptations fit
trends for high-performance processors in 90nm technol-
ogy [8] [1].

Technology parameters are derived from the ITRShp90
high-performance 90nm node [6]. We linearly scaled
HotSpot’s 21364 floorplan based on 130nm technology to
produce a 90nm equivalent chip.

2.3 Management Policies

We incorporated three management techniques into the
simulator, as listed in Table 2. Simulation configuration
flags enable and disable each technique for the duration of
a simulation. When enabled, each technique is triggered
independently by events during program execution.

First, dynamic voltage and frequency scaling (DVFS) al-
ters the supply voltage and operating frequency, which di-
rectly controls power and energy consumption throughout
the chip. The voltage and frequency settings in the model
are independent, though the manager model currently sets
voltage-frequency pairs together for simpler control. The
DVFS manager raises or lowers the voltage and frequency
when maximum and minimum temperature thresholds are
breached.

The second management technique is a form of pipeline
throttling in which the integer issue stage maximum rate
varies between 1 and 4 instructions per cycle. When the
issue rate is throttled below 3 instructions per cycle, one
integer subcluster is effectively turned off with power ac-

Table 1. Baseline Simulator Configuration
Parameter Value Notes
VDD 1.2 volts
Clock rate 4 GHz
Leakage current–high leakage6.6e-6 W/µ m alternate high-leakage sce-

nario: 3e-6 W/µ m
Leakage current–low leakage 6.6e-7 W/µ m 10% of high leakage
integer clusters 2 each cluster: 2 ALU units, 1

register file
floating-point clusters 1 2 ALU units, 1 register file
front-side (system) bus 400 MHz, 64 bits 6 GB/sec bandwidth
main memory DDR2 400 MHz reference [8]

Table 2. Management Policies
Technique Action Simulator Settings

DVFS modulate frequency and voltage settings{600MHz, 0.6V}
(select from V,f pairs) {1GHz, 0.8V}

{2GHz, 1.0V}
{4GHz, 1.2V}
{6GHz, 1.6V}

pipeline scaling turn on/off portions of integer pipeline 1, 2, 3, or 4 integer operations
cache sleep automatically transition idle - idle time before sleep mode

cache lines into sleep mode - time to wake up sleeping lines

counting to eliminate clock and leakage power, though the
microarchitectural model continues to use pre-assigned sub-
clusters for instruction execution. The pipeline throttling
manager raises or lowers the issue stage processing rate
when minimum or maximum temperature thresholds have
been exceeded.

The DVFS and pipeline width techniques use the same
temperature thresholds as trigger points, with varying ef-
fects. The DVFS technique controls dynamic and static
power for the full chip, while the pipeline throttling policy
directly affects the integer execution subclusters and indi-
rectly influences the remainder of the pipeline due to chang-
ing activity rates in the integer units.

The third technique, a cache sleep mode, controls the
amount of leakage current in a cache. When the mode is en-
abled, it automatically transitions idle cache lines to a low-
leakage mode that preserves cell contents. When a sleeping
cache line is needed, the cells are restored to an active state
after a wakeup transition time. The length of idle time and
the wakeup time are determined by simulation configuration
parameters for each cache.

We created a reporting mechanism to the simulator to
record the current settings for voltage, cache sleep mode,
pipeline width, power, energy, temperature, and perfor-
mance during simulation. The statistics are recorded ev-

ery 10,000 cycles and printed in the simulation’s output file
upon program completion.

3 Simulation Results

Figures 1 and 2 illustrate system behavior throughout
program execution. The plots show the results of a 100
million instruction EIO (external input/output) trace simu-
lation of the Spec2000 integer benchmarkgzip. The traces
are composed of program segments identified with Sim-
Point [9] to create a reasonably sized input set that repre-
sents benchmark behavior. EIO traces encapsulate all com-
munication with the operating system in the trace file, cre-
ating identical conditions for each simulation. Differences
in simulation output will be the result of simulator behavior,
not due to variable responses to operating system calls.

The strip charts show the following measurements as a
function of time in msec (from top to bottom):

1. performance in terms of the total instructions com-
pleted and instructions per second

2. maximum hotspot temperature on die

3. accumulated energy throughout simulation

4. average power during 10,000-cycle epochs

5. supply voltage setting

6. pipeline width setting (maximum number of integer in-
structions issued per cycle)

7. percentage of L2 cache lines in sleep mode

3.1 Baseline Case

Preliminary data for the baseline experiment of the sys-
tem with no power management are shown in Figure 1. The
supply voltage is set to 1.2 volts and the pipe width is fixed
at 4 integer instructions. Cache sleep mode is disabled; the
SRAM cells are composed of high-VT, low-leakage tran-
sistors but the cache does not benefit from the additional
leakage reduction of sleep mode. Throughout execution, in-
structions commit at a steady rate, average power oscillates
near 50 Watts, total energy accumulates correspondingly,
and the maximum temperature gradually increases.

3.2 Management-Enabled Case

The second case enables all three management tech-
niques independently. Voltage and frequency levels and the
pipeline width are controlled by thermal monitoring units
that are set to the same trigger points. The controllers will
lower the settings if the maximum temperature exceeds 355
K (82 C) to allow the chip to cool, then increase the settings
if the temperatures drop below 345 K (72 C) to spur per-
formance. With the narrow temperature range, DVFS and
pipeline width settings will continuously adjust with the in-
tent to let the simulator run at the best possible performance
levels within a safe thermal margin such that hotspots on die
never exceed 85 C.

The sleep mode controller does not use temperature lev-
els; the sleep mode policy automatically transitions cache
lines into a low-leakage mode after 1,000 idle cycles, and
charges an extra 25 nsec time penalty to wake up sleeping
lines before use.

The first portion of the management-enabled experiment
is shown in Figure 2. In this simulation, very few lines
are awake at any point in time and the L2 cache maintains
a minimal-leakage state throughout the execution time, re-
gardless of the other settings. The pipe width and voltage-
frequency settings adjust as the temperature fluctuates be-
tween the minimum and maximum thresholds. Every DVFS
change causes a 1µs stall, temporarily suspending pipeline
operation for the voltage change. The voltage and frequency
levels start with the same initial conditions as the baseline
case, then ramp up while the chip is below the minimum
temperature threshold. After the hotspots have exceeded
the maximum threshold, the voltage-frequency settings step

back down a maximum rate of one setting change per mil-
lisecond, until the chip has sufficiently cooled and the cy-
cle begins again. The pipe width controller is set to step
between 2 and 4 in this configuration. Figure 2 illustrates
the cyclic nature of the temperature fluctuations and cor-
responding management setting adjustments. The average
power graph reflects the periodic nature of operation be-
tween setting changes. The rate at which instructions com-
mit is also periodic, although overall lower than the baseline
case due to the lower voltage settings. The rate of instruc-
tions committed per second declines with the DVFS setting.

The management-enabled system does prevent tempera-
ture violations but dramatically extends the execution time,
completing 100 million instructions in about 55 msec. In
contrast, the baseline scenario successfully completed the
program segment in about 17 msec.

3.3 Management Control

Neither the baseline nor the independently-enabled con-
figuration produces a satisfactory balance of performance,
power, energy, and temperature. At one extreme, the uncon-
trolled temperature could present reliability problems; at the
other extreme, the excessive measures to ensure safe tem-
perature could cripple performance, causing a server to vio-
late quality-of-service agreements or a cutting-edge desktop
computer to perform worse than its predecessors.

Clearly, there is room for improvement in the control and
judicious application of the management techniques. One
solution is to empirically determine the best fixed manage-
ment “knob” settings for a given program. For thegzip
benchmark, we found the fixed configuration of 2GHz fre-
quency, 1.0 volt supply voltage, pipe width of 2, and the L2
cache sleep mode enabled provided the minimum execution
time without violating a maximum-allowable temperature
limit of 358 K (85 C). Figure 3 shows the simulation results
for temperature, total completed instructions throughoutex-
ecution, and the rate of instructions committed per second.
The program completed in about 48 msec.

If all program behavior were constant like thegzip
benchmark and knowna priori, the best static settings could
provide effective system control. We expect that a dynamic
management algorithm could further improve the control. A
dynamic, online algorithm could converge to the best static
settings for constant behavior, and for programs with time-
varying behavior, a dynamic algorithm should be able adapt
to find the best settings for each distinct epoch within the
execution.

We have simulated many permutations of management
techniques enabled to trigger automatically, as well as
voltage-frequency and pipe width settings fixed throughout
program execution. By exploring behavior across a spec-
trum of management choices, we can gather information on

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
x 10

7
T

ot
al

 In
st

ru
ct

io
ns

gzip

0 2 4 6 8 10 12 14 16 18 20

350

400

450

T
em

p
(K

)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

E
ne

rg
y

(J
)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

P
ow

er
 (

W
)

0 2 4 6 8 10 12 14 16 18 20
0

1

V
D

D

0 2 4 6 8 10 12 14 16 18 20
0

2

4

P
ip

e
W

id
th

0 2 4 6 8 10 12 14 16 18 20
0

50

100

L2
 S

le
ep

 %

execution time (msec)

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8
10

x 10
6

In
st

. p
er

 s
ec

on
d

Figure 1. Baseline Configuration

0 2 4 6 8 10 12 14 16 18 20

350

400

450

T
em

p
(K

)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

E
ne

rg
y

(J
)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

P
ow

er
 (

W
)

0 2 4 6 8 10 12 14 16 18 20
0

1

V
D

D

0 2 4 6 8 10 12 14 16 18 20
0

2

4

P
ip

e
W

id
th

0 2 4 6 8 10 12 14 16 18 20
0

50

100

L2
 S

le
ep

 %

execution time (msec)

0 2 4 6 8 10 12 14 16 18 20
0

10
x 10

7 gzip
T

ot
al

 In
st

ru
ct

io
ns

0 2 4 6 8 10 12 14 16 18 20
0

5

10
x 10

6

 In
st

r.
 P

er
 S

ec
on

d

Figure 2. Independently Controlled Management Techniques

0 5 10 15 20 25 30 35 40 45 50
0

5

10
x 10

7

T
ot

al
 In

st
ru

ct
io

ns

0 5 10 15 20 25 30 35 40 45 50
0

2

4
x 10

6

In
st

. p
er

 s
ec

on
d

0 5 10 15 20 25 30 35 40 45 50
320

340

360

380

T
em

p
(K

)

execution time (msec)

Figure 3. Best Fixed Setting

the system response for a wide range of conditions. We will
then use the database of simulation data to build a table of
cost functions and range of effectiveness for each technique.
The cost functions will include performance penalties, such
as additional cache latency due to sleep mode or a pipeline
stall to change voltage levels, as well as energy, power, and
temperature costs associated with applying the technique.
Static algorithms for the coordinated manager design will
use the simulation database as an off-line method to choose
knob settings; more sophisticated dynamic algorithms will
use the database to determine initial conditions and continue
to update the cost function table during operation.

4 Conclusion

We developed microarchitectural simulation infrastruc-
ture to estimate performance, power, energy, and tempera-
ture throughout program execution. The processor model
is based on a 90nm version of the Alpha 21364 and is
equipped with three independent management techniques:

• dynamic frequency and voltage scaling (DVFS)
changes the operating speed and total power for the
full chip

• pipeline throttling restricts the rate of integer instruc-
tion issue to reduce dynamic power, and also elimi-
nates leakage power by disabling a subcluster of the
chip’s datapath for narrow pipe-width settings

• cache sleep mode reduces leakage power in caches
while preserving data

This report shows simulations thegzip benchmark to
illustrate scenarios of the processor operating with no man-
agement, uncoordinated dynamic management, and empir-
ically selected fixed management settings.

The goal of our current research phase is to show the op-
portunity for a next-generation power manager in a high-
performance processor. By finding an optimal, or near-
optimal, sequence of management settings for execution of
each benchmark in the suite, we can determine an upper
bound for “perfect” management. We expect the bound
to be significantly better than un-coordinated management
techniques working independently. As we develop the co-
ordinated manager’s algorithms, we will evaluate their ef-
fectiveness in comparison with both the upper bound and
contemporary management approaches.

References

[1] Intel Xeon processor. Intel Corporation.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions. In Proceedings of the 27th Annual Symposium on
Computer Architecture (ISCA), pages 83–94, 2000.

[3] R. Desikan, D. Burger, and S. W. Keckler. Measuring exper-
imental error in microprocessor simulation. InProceedings
of the 28th Annual Symposium on Computer Architecture,
pages 266–277, 2001.

[4] J. Grodstein, R. Rayess, T. Truex, L. Shattuck, D. Bailey,
D. Bertucci, G. Bischoff, D. Dever, M. Gowan, R. Lane,
B. Lilly, K. Nagalla, R. Shah, E. Shriver, S. Yin, and S. Mor-
ton. Power and CAD considerations for the 1.75mbyte,

1.2ghz L2 cache on the Alpha 21364 CPU. InProceedings of
the 12th ACM Great Lakes Symposium on VLSI, pages 1–6,
2002.

[5] H. Hanson, S. W. Keckler, and D. Burger. Coordi-
nated power, energy, and temperature management for high-
performance processors. InProceedings of the 5th Annual
ACAS Conference, 2004.

[6] International technology roadmap for semiconductors
(ITRS), 2003 edition.

[7] K. Natarajan, H. Hanson, S. W. Keckler, C. R. Moore, and
D. Burger. Microprocessor pipeline energy analysis. In
ISLPED, pages 282–287, 2003.

[8] R. Radhakrishnan, R. Ali, G. Kochhar, K. Chadalavada,
R. Rajagopalan, J. Hsieh, and O. Celebioglu. Performance
characterization of BLAST on Intel Xeon and Itanium2 pro-
cessors. InProceedings of the IEEE 7th Annual Workshop on
Workload Characterization (WWC-7), pages 81–88, 2004.

[9] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, October
2002.

[10] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitec-
ture. InProceedings of the 30th International Symposium on
Computer Architecture, pages 2–13, 2003.

