Appears in The 1st ACM/IEEE International Symposium on Neks-on-Chip 2007. IEEE copyright restrictions apply.

Implementation and Evaluation of a Dynamically
Routed Processor Operand Network

Paul Gratz, Karthikeyan Sankaralinga*r,nHeather Hanson Premkishore Shivakumiar
Robert McDonal#, Stephen W. Kecklér and Doug Burgér
* Department of Electrical and Computer Engineering, Thevehsity of Texas at Austin
t Department of Computer Sciences, The University of Texasuatin
cartel@cs.utexas.edu

Abstract— Microarchitecturally integrated on-chip networks, , Processor 0 (OPN)
or micronets, are candidates to replace busses for processo T i

component interconnect in future processor designs. For mi
cronets, tight coupling between processor microarchitectre and
network architecture is one of the keys to improving processr
performance. This paper presents the design, implementain and
evaluation of the TRIPS operand network (OPN). The TRIPS
OPN is a 5x5, dynamically routed, 2D mesh micronet that
is integrated into the TRIPS microprocessor core. The TRIPS
OPN is used for operand passing, register file 1/O, and primay
memory system 1/O. We discuss in detail the OPN design,
including the unique features that arise from its integration with
the processor core, such as its connection to the executiomitis
wakeup pipeline and its in flight mis-speculated traffic remwal.
We then evaluate the performance of the network under synthic
and realistic loads. Finally, we assess the processor pernfoance
implications of OPN design decisions with respect to the entb-
end latency of OPN packets and the OPN'’s bandwidth.

I. INTRODUCTION

As process technologies continue to descend into the deep
sub-micron range, wire delay and design complexity become
limiting factors for current microprocessor designs [1f. |
current processor microarchitectures, data and contrel ar ~ Fig- 1. TRIPS chip plot with operand networks highlighted.
conveyed on specialized busses and other ad-hoc intercbnne
Some processor designs incorporate extra pipeline stages t
commodate the wire delay global wires require [2]. Wire fout
ing and electrical design of these specialized bussesasese to implement, na d!strlbuted fas_mon, hlghe_r level pratisc
in complexity with smaller process technologies. Micrmet,that are centrahzgd in more traditional architectureshsas
or microarchitecturally integrated on-chip networks,\pde a Instruction commit.
solution to this design challenge by offering an alterrmty I this paper we discuss and evaluate the design and
bus-based interconnects that are scalable and have résoriEplementation of one such micronet, the TRIPS prototype
design complexity. processor’s operand network (OPN). Figure 1 shows a plot of

On-chip networks enjoy a scaling advantage relative 8¢ TRIPS prototype processor chip, which was fabricated in
busses since network wire lengths between adjacent routers30nm ASIC process. On the right side of the figure are the
can be kept short and unidirectional. On-chip networks alé§0 processors, each with its own separate operand network,
enable better pipelining of data between nodes and greadgrindicated by the superimposed diagram. Each processor’s
aggregate bandwidth than busses. Finally, design contpleXPN is a 5x5 dynamically routed 2D mesh network with 140-
is bounded since a router is designed once and replicated B8rinks. The OPN connects a total of 25 distributed exemuyti
use wherever needed. register file, and data cache tiles. Each tile is replicated a

Micronetsl atype of On_chip network' are integrated with tHnteraCtS Only with neighboring tiles via the OPN and other
microarchitecture of their host processors to improveesyst control networks. The OPN subsumes the role of several
performance. For example a micronet may be tightly intWattraditional microprocessor interconnect busses, inagidhe
with a processor’s pipe“ne to reduce packet generatimm Operand bypaSS netWOfk, register file read and write |merfa
by taking advantage of information available before thé fujnd the L1 memory system bus.
data payload has been computed. Micronets can also be useédle describe our experience in implementing the OPN

IR = s B j

Processor 1 (OPN)

in a 130nm process technology as a part of the TRIBFatically determined. While this strategy simplifies tbaters,
prototype processor and include a discussion of timing amadcompiler or programmer must generate a routing program
area costs of the network. We also explore the latency atidit executes concurrently with the application program. |
bandwidth of the OPN under statistical loads common in tlagldition to the statically routed network, RAW also imple-
networking literature as well as realistic loads extradtedh mented dynamically routed networks for load/store traffice
TRIPS program execution. Finally, we examine trade-offs ifRIPS OPN is also integrated directly with the executiort.uni
OPN implementation, including the sensitivity of processddowever, to allow for out-of-order instruction executionda
performance to network latency and bandwidth. uncertain memory delays, the OPN routers are dynamic. We
The remainder of this paper is organized as follows. Sealso employed additional routing optimizations to reduuoe t
tion 1l describes related work in micronets. Section Il inper-hop latency to one cycle.
troduces the TRIPS processor microarchitecture. Seckbn | The Monsoon processor was a dataflow architecture that
describes the design and implementation of the TRIPS OPMNed a custom switched interconnection network to provide
highlighting where the OPN is different from typical on-phi similar capabilities as the TRIPS OPN [8]. The WaveScalar
networks. Section V presents an evaluation of the networlgsocessor has a similar philosophy and execution model as
performance under different loads and explores the seitygiti TRIPS, but uses a hierarchy of interconnection networks to
of processor performance to OPN latency and bandwidiiass operands between processing elements [9]. Operands ar
Section VI concludes and discusses future work in micronetbroadcast within the eight processing elements making ep on
domain. Operands pass through a crossbar switch to travel
between the four domains that make up a cluster. Operands
The first operand bypass network was introduced with theaveling to another cluster traverse a 2D mesh networKaimi
IBM System 360/model 91 to avoid delaying the sequentitd the TRIPS OPN.
execution of dependent instructions [3]. This bypass ndtwo Taylor, et al. [10] and Sankaralingam, et al. [11] both
employed a simple broadcast bus (common data bus) thatsent useful taxonomies of operand networks. Taylor cat-
linked each ALU output to each ALU input. Thus an inegorizes operand networks based on whether the assignment,
struction can receive an operand directly from a precedibgnsport, and ordering are each either static or dynamic. |
instruction’s output without the delay of passing it thrbugtheir terms, the TRIPS OPN has statically assigned op&tio
the register file. that are dynamically transported and ordered. Sankagating
The development of deeply pipelined superscalar architexategorizes operand networks based on network organizatio
tures drove increases in the complexity and latency of ks/pgpoint-to-point vs. broadcast), network architecturagt hop
networks. Deeper pipelines increased the number of stages multi-hop), and router control (static vs. dynamic). By
in which an instruction could produce a result or consunthis taxonomy, the TRIPS OPN is a point-to-point, multi-hop
an operand. Wider pipelines increase the bypass bus netwoekwork with dynamic router control.
complexity quadratically with the number of ALUs because of Pinkston and Shin [12] use data from the 2003 International
the full connectivity between ALU outputs and ALU inputsTechnology Roadmap for Semiconductors (ITRS-2003) [13]
This N2 scaling rate is not viable beyond a small number a6 demonstrate how trends in semiconductor technology are
ALUs. The Multiscalar processor architecture used pariiti leading to partitioned microsystem architectures. Theyidie
ing of the ALUs and register file into separate componendstaxonomy that categorizes microsystem architecturesdoas
connected by a ring to reduce operand delivery complexity [49n how they are partitioned, with the insight that the trend
Similarly, the Alpha 21264 architecture divided its fouteger toward partitioned architectures is driving the adoptié-
ALUs into two clusters to reduce the complexity of itschip networks. By this taxonomy TRIPS processor core is
bypass network [5]. Operands produced within one cluseer grhysically partitioned in a compiler-visible form.
available for use in the same cluster in the next cycle, eyt th Dally and Towles [14] proposed a 2D torus network as a
must pay a single cycle penalty to be used in the other clusteplacement for general on-chip interconnect, but notifipec
Other machines have sought to reduce communication &lly for operand networks. They claim that on-chip network
tency between processors through cross-processor registe modularity would shorten the design time and reduce the
register communication. The M-Machine employed an on-chigire routing complexity. Our experience bears this out,hes t
cluster switch to connect the register bypass networksfeet design, implementation, timing optimization, and verifica
processors; an instruction writing to a remote registezdty of the TRIPS OPN were all straightforward. On-chip routed
its result into the switch, which delivers the data to a wagjti networks have also been proposed for use in SoCs (system-on-
instruction on a remote processor [6]. The MIT RAW proces-chip) such as in CLICHE [15], in which a 2D mesh network
sor took this strategy further, by using a 4x4 mesh netwoik proposed to interconnect a heterogeneous array of IRloc
to interconnect its processor tiles between executiors yrjt
The integration of the RAW network into the local bypass
network of each execution unit reduced the latency of ogkran TRIPS is a distributed processor consisting of multiple
passing between units to three cycles. One interestingrieattilies connected via multiple micronets. Figure 2 shows a
of RAW is that network routing arbitration and ordering ardile-level diagram of the processor with its OPN links. The

Il. RELATED WORK

Ill. TRIPS PROCESSOROVERVIEW

Y

< o ; s a4 register read instructions that fetch block inputs from the
= = [RTs and deliver them to waiting instructions via the OPN.
+> Instructions within the block then execute in dataflow order

Sl Global Control Tile Load and store instructions compute their addresses inTke E

i = = =< = ; ;
¢ ¥ Register Tile which are then transmitted to one of the DTs to access the data
2| |2 E4m B B B Data Gache Tile cache. Addresses are interleaved across the DTs on caehe-li
EO'“ oo boundaries (64 bytes). Register outputs are transmittedl ba
S S O reeon T to the RTs where they wait in write queues before updating
Instruction Cache Tile H H H H
the architecturally persistent register file banks.
E12 E1 E14 E -—
! When all of the RTs and DTs have received all of the

register writes and stores for the block, they communidate t
Fig. 2. Block diagram of the TRIPS processor core with tilesl ©PN to the GT via the global control network (GCN). When the
network connections. GT receives completion notification from all DTs and RTs, the

block is complete. If the block has not caused any exceptions

the GT signals to the DTs and RTs that the block can commit.
processor contains five types of tiles: execution tiles (EThe DTs then update the cache with the store values from the
which contain ALUs and reservation stations, registerstilestore buffers and the RTs update the register file banks with
(RT) which each contain a fraction of the processor registétfe contents of the write queues. When all of the state of
file, data tiles (DT) which each contain a fraction of the lelre the block has committed, a new block may be mapped into
data cache, instruction tiles (IT) which each contain atioac its place for execution. The TRIPS processor allows up to 8
of the level-1 instruction cache, and a global control ttBlf blocks in-flight and executing simultaneously, with 1 being
which orchestrates instruction fetch, execution and cdrimi non-speculative and 7 being speculative. Complete dethils
addition, the processor contains several control netwfisks the TRIPS microarchitecture and can be found in [17].
implementing protocols such as instruction fetch, commtet During block execution, the TRIPS operand network (OPN)
and commit in a distributed fashion. Tiles communicate dias the responsibility for delivering operands among tles.ti
rectly only with their nearest neighbors to keep wires sharhe TRIPS instruction formats contain target fields indigat
and mitigate the effect of wire delay. to which consumer instructions a producer sends its valdes.

ISA and execution model:TRIPS is an explicit datagraphruntime, the hardware resolves those targets into coaetiria
execution (EDGE) architecture, an instruction set archite be used for network routing. An operand passed from producer
with two key features: (1) the hardware fetches, executas, a&o consumer on the same ET can be bypassed directly without
commits blocks of instructions, rather than individualtins- delay, but operands passed between instructions on differe
tions, in an atomic fashion; and (2) within a block, instians tiles must traverse a portion of the OPN. The TRIPS execution
send their results directly to other instructions waitir@y tmodel is inherently dynamic and data driven, meaning that
execute, rather than communicating through a common eggisbperand arrival drives instruction execution, even if apeis
file [16]. The compiler is responsible for constructing tec are delayed by unexpected or unknown memory latencies.
which can contain up to 128 instructions. Since basic blocBgcause of the data driven nature of execution and because
typically contain only a handful of instructions, the TRIPSnultiple blocks execute simultaneously, the OPN must dy-
compiler uses techniques such as predication, loop ungolli namically route the operand across the processor.
and function inlining to create large hyperblocks. Aftepby-
block formation, a scheduler maps the block onto the fixed IV. OPN DESIGN AND IMPLEMENTATION
array of 16 execution units, with up to 8 instructions per ET. The operand network (OPN) is designed to deliver operands
The scheduler is aware of the topology of the ETs and attempisiong the TRIPS processor tiles with minimum latency. While
to minimize the distance between dependent instructiarsgal tight integration of the network into the processor coreucss
the program’s critical path. The scheduler determines eher the network interface latency, two primary aspects of the
instruction will execute and encodes this in the prograratyin TRIPS processor architecture simplify the router desigd an
but the hardware executes instructions in dataflow ordexhaseduce routing latency. First, because of the block exenuti
on when an individual instruction’s operands arrive. model, reservation stations for all operand network packet
Block execution: Processing a TRIPS block requires fouare pre-allocated, guaranteeing that all OPN messagesecan b

phases: fetch, execute, complete, and commit. To fetchcensumed at the targets. Second, all OPN messages are of
block, the GT transmits a fetch request to each of the ITiged length, one flit broken into header and payload phits.
using the TRIPS global dispatch network (GDN). Each IT } .
then retrieves a portion of the block (32 instructions) frofi- OPN Design Details
its instruction cache bank and delivers them to pre-aletat The OPN is a 5x5 2D routed mesh network as shown
reservation stations in the ETs and RTs. An instructionsaiin Figure 2. Flow control is on/off based, meaning that the
in its reservation station until all of its operands havaved receiver tells the transmitter when there is enough buffacs
before it can execute. Block execution is instigated by isppecavailable to send another flit. Packets are routed through th

Control phit Data phit pooTTTTTmmmmmmmm 0
Field bits Field bits ! - !
Valid ([Vaiid 1 conva O3 | Adter |+ North,
Type (LD/ST/etc.)| 4 || Type (normal/null/exception)| 2 5 : :
Block ID 3 || Data operation (access width) 3 ot > Sortral : >
Dest. node 6 || Data payload 64 South | Crossbar ' South
gcensjtr.ctian?]tcr)ggtion g LD/ST Address 40 control 22U E 4xd E ou
Source instruction| 5 Data _,: : _—
TABLE | contl East | East
BREAKDOWN OF BITS FOROPNCONTROL AND DATA PHITS. e ' '
Data —p: : ——
' Data '
West | Crossbar 1 West
Control —>: 4x4 : —_—)
network in Y-X dimension-order with one cycle taken per hop. Data ' :
A packet arriving at a router is buffered in an input FIFO : :
prior to being launched onward towards its destination. @ue fusn ask L0C8I} | [Tocaiimi ' Local
dimension-order routing and the guarantee of consumpfion o centro! ——» | —
messages, the OPN is deadlock free without requiring Virtua pata > L
1 1

channels. The absence of virtual channels reduces aitwitrat @~ =00 ooooooo------.
delay and speeds routing.

Each operand network message consists of a control phit
and a data phit. The control phit is 30 bits and encodes OPN
source and dgstln_anon n_ode coordinates, along W'.th e packet have separate 4x4 crossbars. All arbitration antihgpu
to indicate which instruction to select and wakeup in thgear . L .)
I . .) is done on the control phit, in round-robin fashion among all
ET. The data phit is 110 bits, with room for a 64-bit data . - : .
. . .. Incoming directions. The data phit follows one cycle behind
operand, a 40-bit address for store operations, and 6 hits EE) o . N L
. e control phit in lock step, using the arbitration deaisio
status flags. Table | shows a breakdown of all of the bits Bom i .
: rom its control phit.
the data and control phits. _
The data phit always trails the control phit by one cyclB.- OPN/Processor Integration
in the network. The OPN supports different physical wires ET/OPN datapath: Figure 4 shows the operand network
for the control and data phit so one can think of each OPdMtapath between the ALUs in two adjacent ETs. The in-
message consisting of one flit split into a 30-bit controltphstruction selection logic and the output latch of the ALU are
and a 110-bit data phit. Because of the distinct control améth connected directly to the OPN’s local input port, while
data wires, two OPN messages with the same source ahd instruction wakeup logic and bypass network are both
destination can proceed through the network separated dnnnected to the OPN's local output. The steps below describ
a single cycle. The data phit of the first message and ttiee use of the OPN to bypass data between the ALUs.
control phit of the second are on the wires between the samg Cycle 0: Instruction wakeup/select on ET 0

Fig. 3. OPN router microarchitecture.

two routers at the same time. Upon arrival at the destination _ 70 selects a ready instruction and sends it to the
tile, the data phit may bypass the input FIFO and be used ALU.

directly, depending on operation readiness. This arraegém — ETO recognizes that the instruction target is on ET1
is similar to flit-reservation flow control, although hereeth and creates the control phit.

control phit contains some payload information and does not

race ghea(_:i of the d_ata phit [18]. In all, the OPN has a — ETO executes the instruction on the ALU.

peak injection bandwidth of 175 GB/sec when all nodes are ; .

S . . — ETO delivers the control phit to router FIFO of ET1.

injecting packets every cycle at its designed frequency of ' i

400MHz. The network’s bisection bandwidth is 70 GB/sec ® CYCle 2 Instlructlon Wakeup/sglect onET1)

measured horizontally or vertically across the middle @& th — ETO delivers the data phit to ET1, bypassing the

OPN. FIFO and depositing the data in a pipeline latch.
Figure 3 shows a high-level block diagram of the OPN — ET1 wakes up and selects the instruction depending

router. The OPN router has five inputs and five outputs, one on the data from ETO'.

for each ordinal direction (N, S, E and W) and one for the ¢ Cycle 3: Instruction execution ET1

local tile’s input and output. The ordinal directions inpetch — ET1 selects the data bypassed from the network and

have two four entry deep FIFOs, one 30 bits wide for control executes the instruction.

phits and one 110 bits wide for data phits. The local input The early wakeup, implemented by delivering the control

has no FIFO buffer. The control and data phits of the OPphit in advance of the data phit, overlaps instruction piyel

o Cycle 1: Instruction execution on ETO

! Reservation Station ETO | | ET1 Reservation Station I
[(I v [
Select		
! Select !		
Wakeup h 10 !		
— >		
! Decode and I		
! Arbitration		
30		
I > |
I OPN Router 0 OPN Router 1 I

Fig. 4. Operand datapath between two neighboring ETs.

control with operand data delivery. This optimization reeisi Component % Router Area | % E'T"i Area
the remote bypass time by a cycle (to one cycle) and improves Router input FIFOs 74.6% 7.9%

yp] yacy : Yy) p > Router crossbar 20.3% 2.1%
performance by approximately 11% relative to a design where Router arbiter Togic 5 1% 0.5%
the wakeup occurs when the data arrives. In addition, thETotal for single router - 10.6%
separation of the control and data phits onto separate nietwo TABLE Il

with shared arbitration and routing eliminates arbitratfor

the data phit and reduces network contention relative to a
network that sends the header and payload on the same wires
in successive cycles. This optimization is inexpensivenn a

on-chip network due to the high wire density. , i
The OPN employs round-robin arbitration among all of thif¢Y aré removed. While we chose to implement the FIFOs

inputs, including the local input. If the network is undeatb UYSINY shi_ft registers to simp_lify invalidation, the proubcould_
and chooses not to accept the control phit, the launching ndliSC_P€ implemented for circular buffer FIFOs. A collapsing
captures the control phit and later the data phit in a locklT© that immediately eliminates flushed messages could
output buffer. The ET will stall if the instruction selectéor Urther improve network utilization, but we found that the
execution needs the OPN and the ET output buffer is alreal rformance improvement did not outweigh the increased
full. However, an instruction that needs only to deliver itd€Sign complexity. In practice, very few messages are bytua
result to another instruction on the same ET does not stifShed:
due to OPN input contention. While OPN contention can delad Area and Timin
instruction execution on the critical path of program ety ' 9
the scheduler is effective at placing instructions to maitggy ~ The TRIPS processor is manufactured using a 130nm IBM
the distance that operands must travel and the contentiyn tASIC technology and returned from the foundry in September
encounter. 2006. Each OPN router occupies approximatelsmm?,
Selective OPN message invalidatiorBecause the TRIPS which is similar in size to a 64-bit integer multiplier. Tabll
execution model uses both instruction predication anddirarshows a breakdown of the area consumed by the components
prediction, some of the operand messages are actually spafcan OPN router. The router FIFOs dominate the area in
ulative. On a branch misprediction or a block commit, thpart because of the width and depth of the FIFOs. Each
processor must flush all in-flight state for the block, indhgd router includes a total of 2.2 kilobits of storage, implerteeh
state in any of the OPN'’s routers. The protocol must selelgtiv using standard cell flip-flops rather than generated memory
flush only those messages in the routers that belong to threregister arrays. Utilizing shift FIFOs added some area
flushed block. The GT starts the flush process by multicastingerhead due to extra multiplexors. We considered using the
a flush message to all of the processor tiles using the globihtary generated SRAMs instead of flip-flops, but the area
control network (GCN). This message starts at the GT amsterhead turned out to be greater given the small size of each
propagates across the GCN within 10 cycles. The GONFO.
message contains a block mask indicating which blocks areA single OPN router takes up approximately 10% of
to be flushed. Tiles that receive the GCN flush packet instribe ET's area and all the routers together form 14% of a
their routers to invalidate from their FIFOs any OPN messagprocessor core. While this area is significant, the altéraat
with block-identifiers matching the flushed block mask. Aef a broadcast bypass network across all 25 tiles would
the invalidated packets reach the head of the associat&sFIlEonsume considerable area and is not feasible. We could have

AREA OCCUPIED BY THE COMPONENTS OF ADPNROUTER.

Compor(l:entt TPRITP th| Latency | % Path overall network contention and latency while increasing ET
Read from instru(():rt}()rg buf‘flel’ a 290ps 13% execution bandwidth, as ETs would spend less time blocking
Control phit generation 620ps 7% for message injection. Another optimization would give-net
ETO router arbitration 420ps 19% work priority to those OPN messages identified to be on the
ETO OPN output mux 90ps 4% program’s critical path. We have also considered improving
ET1 OPN FIFO muxing and setup time 710ps 31% network bandwidth by replicating the operand network by
Latch setup + clock skew 200ps 9% replicating the routers and wires. We examine this optitiora
Total Data PRt Paih 2.26ns - further in Section V-E. Finally, the area and delay of ourigies
Read from output latch 110ps 7% was affected by the characteristics of the underlying ASIC
Data phit generation 520ps 320 library. While the trade-offs may be somewhat differenthwit
ETO OPN output mux 130ps 8% a full-custom design, our results are relevant because lhot a
ET1 router muxing/bypass 300ps 19% on-chip networked systems will be implemented using full-
ET1 operand buffer muxing/setup | 360ps | 22% custom silicon. Our results indicate that such ASIC designs
Latch setup + clock skew 200ps | 12% would benefit from new ASIC cells, such as small but dense
Total 1.62ns -
memory arrays and FIFOs.
TABLE Il
CRITICAL PATH TIMING FOR OPNCONTROL AND DATA PHIT. V. OPN EVALUATION

In this section, we evaluate the behavior of the OPN on
statistical and realistic network workloads, using ourrapd
network simulator to model the OPN hardware. We char-

reduced router area by approximately 1/3 by sharing the FIFterize the operand network message workload and show
entries and wires for the control and data phits. However, tthat injection is not distributed evenly across the nodes d
improved OPN bandwidth and overall processor performante the TRIPS execution model and scheduler optimizations.
justifies the additional area. Finally, we examine the sensitivity of program performance
We performed static timing analysis on the TRIPS desigind operand network latency to OPN bandwidth and latency
using Synopsys Primetime to identify and evaluate criticplarameters.
paths. Table 1l shows the delay for the different elements
of the OPN control and data critical paths, matching th® Methodology
datapath of Figure 4. We report delays using a nominal peoces The OPN simulator is a custom network simulator config-
corner, which we obtained by scaling our worst-case procas®d with the operand network design parameters. It cantinje
corner delays by a factor of 2/3. A significant fraction ofmessages using different traffic patterns, including raméad
the clock cycle time is devoted to overheads such as flip-floft-reversal, with variable injection rates. It can alscejt
read and setup times as well as clock uncertainty (skew aachetwork trace file that specifies source nodes, destination
jitter). A custom design would likely be able to drive thesaodes, and injection timestamps. We obtained realistidkwor
overheads down. On the logic path, the control phit is mudbad traces from an abstract TRIPS processor performance
more constrained than the data phit due to router arbitratiestimator {sim-cyg, which runs compiled TRIPS programs.
delay. We were a little surprised by the delay associatdthis simulator models TRIPS block execution at a high
with creating the control phit, which involves decoding antevel, but employs a simple analytical performance model
encoding. This path could be improved by performing theithout accurate OPN contention estimation. Nonethetess,
decoding and encoding in a previous cycle and storing teenulator matches performance of the logic design of TRIPS
control phit with the instruction before execution. We fdunto within 25%. The high simulation speed of tsim-cyc allows
that wire delay was small in our 130nm process given thes to obtain traces for long running programs. However, the
relatively short transmission distances. Balancing nodé&ay message injection times only approximate those that will be
and wire delay may be more challenging in future processen in hardware. For more detailed analysis, we also used

technologies. our low-level simulator tsim-prog which accurately models
] o all aspects of a TRIPS processor core, including network
D. Design Optimizations contention. This simulator has been validated for accuracy

We considered a number of OPN enhancements but chagminst the TRIPS RTL and hardware. Unfortunately, thedspee
not to implement them in the prototype to simplify the desigrof this simulator prevents analysis of large programs.
One instance where performance can be improved is when a®ur realistic workloads include programs from the
instruction must deliver its result to multiple consuméree EEMBC [19] and SPEC2000 [20] benchmark suites. The 30
TRIPS ISA allows an instruction to specify up to 4 consumerEEMBC benchmarks are small enough to run to completion
and in the current implementation, the same value is injicte on both tsim-cyc and tsim-proc. The 19 SPEC CPU2000
the network once for each consumer. Multicast in the netwobenchmarks were run with the Minne-SPEC [21] reduced input
would automatically replicate a single message in the reuteet, but were still too long-running for tsim-proc. The SPEC
at optimal bifurcation points. This capability would re@uc benchmarks were run to completion (50 million cycles for the

50% 16%

14% —

40%

12%

@ % M _
- % _ _
S 30% E o —
o
3 . g -
a == Uniform Random s o ||
3 20% -=— Bit Reversal [
&J g 6% |
£
o
10% 4% L1
2% |
0% T T - :
0% 20% 40% 60% 80% 100% o% O

isde
ye
ada

@
]
<

dizb

3
a

Offered Rate

dwwe
nidde
zdizq
Ayeio
syenbs
esaw
pub
Josied
Yoenxis
wims
Jlomy
X8LIOA
asimdnm
abeiane

Fig. 5. Offered vs accepted rate for random and bit-reveraéfic. Fig. 7. Average offered rates in SPEC CPU2000 benchmarksdrac
20
181 Figure 6 shows the average measured packet latency in
161 cycles for increasing offered rate. The average latencyiter
141 reversal traffic gradually increases from around 5 to 8 ®ycle
> 12 for offered rates of 1% to 32%. The latency then increases
5 . L
g 109 —— Uniform Random exponentially as the network _becomes saturated. Similarly
- g —=— Bit Reversal for random traffic the latency increases from about 4 to 7
61 A cycles for offered rates from 1% to 40% before increasing
4] dramatically. This diagram shows that 32% and 40% are the
54 saturation offered rates for bit-reversal and random traffi
respectively.

%% 10% 20% 30% 40% 50%
Offered Rate C. OPN Traffic Trace Analysis

Our earlier work examining the OCN [22] showed that reall
benchmark generated traffic in on-chip networks would not
be modeled well by traditional synthetic loads. We perform a
similar analysis for the OPN using network traces generated
shortest benchmark), or for 300 million cycles after prografrom tsim-cyc and characterize the network workload.
warmup. The traces include 2-70 million operand messagesyariation in application offered rate: Figure 7 shows the
depending on the benchmark. average offered rate for various SPEC CPU2000 benchmark
traces generated from tsim-cyc. For each applicationtetra
we derived the offered rate by dividing the number of total

Interconnection networks are typically evaluated by exarmessages by the product of the cycle count and the number
ining their performance on stochastically generated lo&ds of injecting nodes (25 for the 5x5 network). While the offére
common loads are bit-reversal and uniform random trafficates vary widely, from under 1% fotwol f to almost
In bit-reversal, each node exchanges packets with a nodela®s for ntf, the average offered rate is well below the
the opposite side of the network. The random traffic modsaturation threshold range of 30-40% for bit-reversal and
randomly chooses source and destination pairs from aménguadiform random. The magnitude of the offered rates coreelat
the TRIPS core tiles. Both traffic models inject packets atta the degree of ILP that the TRIPS compiler has exposed to
uniform random distributed rate. Figure 5 shows the offered the processor. A benchmark with more exposed ILP will have
accepted rate for both of these types of traffic. The offea¢el r more operations occurring simultaneously and will therefo
is the rate at which packets are generated, while the aatepgenerate more operands each cycle than a benchmark that has
rate is the throughput of the network. In these diagramsng dependency chains and lower ILP.
the offered and accepted rates are shown as a percentage éf/erage packet hop distancefigure 8 shows the average
the peak injection bandwidth. The accepted rate tracks thember of hops, or router traversals, from source to ddgtima
offered rate for bit-reversal traffic up to 33%, from there thfor OPN packets from various SPEC CPU2000 benchmark
accepted rate continues to increase, finally leveling of486. traces. These values are generated by averaging the Mamhatt
For random traffic the accepted bandwidth tracks the offerditance from source to destination for each packet in teetr
bandwidth up to approximately 46% before leveling off to af each benchmark. Because the OPN is a single cycle per hop
maximum of 47%. These are typical curves for this type afetwork, this distance also represents a best case rowglag d
2D mesh network. for each packet in the absence of any network contention.

Fig. 6. Offered rate vs average latency for random and bérsal traffic.

B. Synthetic Statistical Loads

25 Go

O
%
14%
[°r3

Do E0

284

05 H A HHHHHHHHHHHHHH

I3
D1 E

[

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

| |

21%
ﬁox

32%

Y

T

3 s
ES g

dwwe
nidde
1sde

e
zdizq
Ayes
oyenbe
deb
dizb
esaw
pubw
Josied
soenxis
wims
Jomy
XeHon
asimdnm
abesene

Fig. 8. Average number of hops from source to destinatiorvéoious SPEC
CPU2000 benchmarks.

” 25‘/13

B 16%3

P4 1% 1% o%

Fig. 10. Link utilization formesa SPEC CPU2000 benchmark.

averaged across all SPEC CPU2000 benchmarks. The X-Y
plane of the graph matches the layout of the 5x5 operand
network and the different shades highlight the differetg ti
types. The per-tile offered rates vary widely, from a low of
2.6% for E15 in the lower right to a high of 16.7% for EO at the
upper left. The disposition of offered rates reflects the ARI
compiler’s instruction placement optimizations that e

to minimize operand routing distance. Thus, instructiores a
preferentially placed near the register file and data caitdee t

to reduce block input and output latency. Our analysis shows
that even though average offered rate is low, applicatiams c
easily create network injection hot spots that may approach
local saturation, producing higher than expected trarsions

Fig. 9. Offered rates for SPEC CPU2000 benchmarks brokemdow latencies. The compiler schedules instructions to moralgve
sources. distribute the network traffic; however such optimizatiomsst

be balanced against the effect of increasing the averageesou
to destination hop count.

The figure shows that average hop distance for all bench-Variation in link utilization: Hot spots also form when
marks is 2.13. There is little variance from one benchmarkany messages must pass through the same link. Figure 10
to the next. In TRIPS, instructions are statically mapped dabels each OPN link with the link occupancy percentage for
particular nodes; the TRIPS compiler tries to map instaungti the mesa SPEC CPU2000 benchmark. We choose to show
as close as possible to the source of their operands, bénthatthe data for one benchmark instead of averaging across all
register file or data cache for register reads or memory loa@$ them because of the variance across the benchmarks. The
or other E tiles producing their operands directly. Ofisgtt southbound link between E4 and E8 has a high utilization of
this, the compiler must ensure that the instructions arelgve41% and many other links are in the 15%-20% range. High
distributed across the execution resources to ensure mlinirink utilizations will have a disproportionately large efft
resource contention. on latency because of congestion and limits the performance

Variation in offered rate by source: While the overall improvement available through virtual channel flow control
average offered rate of the OPN is low, that metric does n@tr experience shows that other benchmarks place a maximum
accurately capture hot spots in the network. Figure 9 shol@ad of only 5-10% on any link.
the average offered rate for each individual OPN node as aTraffic burstiness: In addition to load variability across
percentage of the peak offered rate of one message per cyafglications and network nodes, offered traffic can varyr ove

—&— mcf —— mgrid

)
N
=

40%

a
S
1

IS
=
o

Offered Rate
©
=
[
il
Cycles

2% H —
1% H «{ H R HE
L

«Q

. s

3

Offe rEd Rate Benchmark

Fig. 12. Offered rates and latencies for SPEC CPU2000 beadtsfrom
the OPN network simulator.

% of packets

n|dde
I1sde
ye
diz6
w
wims
Jlomy
1dn |

XOHOA 4—‘_|
[
[

0% 10% 20% 30% 40%

zdizq
Ayerd
ayenba
]
esaw
pubw
Jasted
SoeJXIS
asimdnm 1
obelone |

dwwe

Fig. 11. Distribution of offered rates measured as a peagenbf packets
injected at a given offered rate.

‘D Network Trace Simulator B RTL Simulator

time. TRIPS naturally has traffic bursts because a block *
begins execution through the injection of many registenesl 10
from the top of the network. To measure this burstiness,w \
we examined the trace at 1000 cycle intervals, counted theg
number of messages in each interval, and computed the
offered rate for the interval. Figure 11 shows a histogram . a a
of the offered rates for two SPEC CPU2000 benchmarks,
ncf and ngri d. The X-axis shows the histogram buckets
at 1% intervals, while the Y-axis shows the fraction of all
messages that fall into each bucket. The figure showsnitiat
has a relatively stable offered rate centering around 29 fo Benchmarks

most packets, meaning that the network is evenly loaded ovgy. 13. EEMBC benchmark latency from the high-level tsipe-traces
time. Converselyngr i d shows more diversity in its offered versus the detailed processor model tsim-proc.

rates with significant numbers of packets clustered around

20%, 34% and 38%. Based on these results we conclude that

the traffic ofmgri d has more bursts than that otf, and offered rate and latency: Figure 12 shows the average
likely has spikes in latency for critical operands travegsi offered rate and latency for the SPEC CPU2000 on the OPN
the _network. Such bursts may motivgtg lightweight ”etwor_éﬁmulator. Compared to the results in Figure 7, the offeatels
designs that tolerate and spread traffic in response ton@ryhe significantly lower because of the block-level throgli
loads. The benchmarks that had the highest offered rates show
offered rates that are reduced by as much as two thirds.

The right bar for each benchmark shows the average mes-

To examine how the network performs under load, weage latency for each benchmark. In general, benchmarks
applied the traces to the OPN trace-driven simulator. The iwith higher offered rates show higher average latencies, bu
herent weakness of trace-driven network simulation isdlk | certain benchmarks show the reverse. For exampié, has
of a feedback loop between the network simulation and trattee highest offered rate at 5.1% while it has a fairly average
generation. In the real TRIPS processor, network congestiatency of about 10 cycles. Conversatgri d has a fairly
will throttle instruction execution, in turn throttling ¢hoffered average offered rate of around 3% but the highest average
rate. To bound this difference, for each message we trackatency at 15.5 cycles. This dichotomy can be attributedhéo t
the instruction block to which it belongs and ensures thhtirstiness in the traffic and high utilization of particlyanot
messages from only eight consecutive blocks are consideli@fs. The OPN simulator shows that the average latencies ar
for injection at any one time. These eight correspond to thégh, ranging from 6 to 15 cycles. Although throttling will
one non-speculative and seven speculative blocks that ¢aavent actual OPN latencies from reaching these leveds, th
execute simultaneously. This approach represents a r@algonmeasured latencies highlight where OPN network performanc
compromise that keeps the processor and network simulatonprovement has a direct affect on processor performance.
separate. The lack of intra-block throttling places sommesg Network throttling: To examine the impact of throttling on
stress on the network, giving additional insight on the Idad latency, we used the cycle-level simulator tsim-proc. Beea
the network were ideal and non-contented. tsim-proc is approximately 300 times slower than the tsim-

>
I

o

L0swize
L0s1eI08
ooy
sbeiony

L0Jpaued

Lopowmnd

D. Network Simulator-based Analysis

@1 network M 2 networks 03 networks 04 networks MIdeal

[Baseline M No Early Wakeup B 2 cycles per hop

3.50
—L 16
3.00
14
2.50
12
2.00 —‘
O
=S E,wo
1.50 g
S s
1.00 |-|
6
0.50
4 L |
0.00 +
0 9 9 O o o «Q n v o < <
31:1:;‘3*3;»‘@3338;-5501:52 2
@ 5 Y% ¢ o Q 0 e = = 3 = S
E-A s 5 c T ¢ 345387 S Q2
3 < R a8 s g =g 0 AR
~ -
L 3 8 8 8 F § 8 8 KR 2 3 28°%8 &£ ¢2 5 5 s & ¢
3 ¢ 2 T > § ° v % ¢ 5 8 5 3 % 3 " v ¢
3 € <2 ® @ o 9) 2 o
2 8 = 8
@ = g G

Fig. 14. Comparison of baseline OPN versus an OPN withoutetirdy

wakeup and an OPN that consumes two cycles per hop. Fig. 15. Average packet latency for SPEC CPU2000 benchnvaitksl, 2,

3 and 4 OPN networks.

cyc simulator we used to generate traces, we chose the shai@rease the network diameter by using higher-radix reuter
EEMBC 2.0 suite of embedded system benchmarks. Figured.@d a more h|gh|y interconnected t0p0|ogy_ This approach is
shows the average latencies of OPN packets as measurefldfa good fit for the OPN for two reasons. First, increasing
both tsim-proc and the OPN network trace driven simulatahe radix of the routers increases the logical complexity of
While the network simulator shows an average latency oftde routers, possibly to the point of becoming the TRIPS
cycles, tsim-proc shows only 2.25 cycle, again due to thmgtt core’s critical timing path. Second, as shown in figure 8 the
from instruction dependences in the program. This can beagerage hop distance for packets on the OPN is just over 2,
little deceiving because throttling manifests as stallstie 5o increasing the network’s order would not decrease the end
execution tiles (ETs) rather than in the network. Thus fqp-end latency of a large fraction of the injected messages.
network research, trace-based simulation still providesdg Sjowing down the clock or pipelining the routers in order to
insight into network behavior, but one must take care whefthieve timing would mitigate any gains.
analyzing system performance based on network performanceas an alternative, we investigated replicating the network
links and routers as a means to increase the effective band-
width of the network and reduce contention. We simulate a
Packet End-To-End Latency: The TRIPS prototype is simple scheme in which nodes inject packets into each nktwor
designed to support one-cycle communication latency betwean a round-robin fashion. If a network is blocked due to
adjacent ETs. Speculative injection of the operand messagfhgestion, the injecting node skips it until the congestio
header, early wakeup of the consumer, and bypassing gire¢4l alleviated. Figure 15 shows the average packet lateley fr
from the network input limit the latency of operand networkhe OPN trace simulator for the SPEC CPU2000 benchmarks
transmission. Each additional hop in the network costs onfyth 1 (the current OPN configuration), 2, 3 and 4 networks
one cycle. To examine the sensitivity of performance fgterconnecting the nodes of the OPN. The expected latency
latency, we simulated two alternate designs. The first ef®silayithout contention is shown as “Ideal”. The biggest improve
an architecture that does not have early wakeup and th{gnt in latency occurs between 1 and 2 networks, almost
requires one additional cycle for every operand transmigalving the average latency. However, replication comes at

sion. The second emulates a two-cycle-per-hop network dgst of doubling the area consumed by the network.
model slower routers and wires. Figure 14 compares the

IPC (instructions-per-clock) of the TRIPS processor care f VI. CONCLUSIONS ANDFUTURE WORK
the different design points. Without early wakeup, prooess In this paper, we presented the design, implementation,
performance drops by about 11%; a two-cycle per hop netwaakd evaluation of the TRIPS OPN. The TRIPS OPN is a
decreases IPC by 20%. Thus performance of TRIPS is quitécronet that interconnects the functional units withire th
sensitive to OPN latency. TRIPS processor core. The OPN replaces an operand bypass
Bandwidth: A simple way to improve the performancebus and primary memory system interconnect in a technology
of a network is to increase its bandwidth. Typically onscalable manner. The tight integration between the OPN and
would increase the bit-width of the network’s interfaces tthe processor core elements enables fast operand bypassing
decrease the number of flits per message, network occupameypss distributed ALUs, providing opportunity for greate
and message injection and extraction latency. Because ith&ruction-level concurrency. Our implementation arurica-
OPN already has single-flit packets, increasing the linéithvi tion shows that such a network is feasible in terms of area and
will not affect network occupancy or processor performanceelay, and that the network design provides good perforeanc
Another way to improve the performance of a network is tfor the traffic provided by real applications.

E. Operand Network Sensitivity Studies

We used synthetic benchmarks along with static tracps] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwafcélar
generated from SPEC CPU2000 traffic to evaluate the per-
formance of the OPN micronet under different loads. We
found that the offered traffic varied widely across multiplgi1]
applications and across different processor tiles; sttaha
workloads are not representative of such real workloads. Ou
experiments confirm the expectation that distributed psce [12]
performance is quite sensitive to network latency, as just o

additional cycle per hop results in a 20% drop in performan
Increasing the link width in bits does not help this netwo

since the messages already consist of only one flit. Rejigcat

the network to improve bandwidth and reduce latency is

i

14]

promising as increasing the wire count in on-chip networks
is not prohibitively expensive. However, network routeear [15]
(particularly router buffers) is not insignificant and teests
must be balanced with network performance benefits.
We expect that fine-grained networks will increase i
importance, initially as memory oriented networks for chip
multiprocessors and SoCs, but ultimately in support of finer
grained communication and synchronization. Further mesea
is needed to re-examine standard multichip interconnectio
network architectures with respect to the constraints gnd o
portunities of on-chip networks. In addition to networlelaty
and area, we expect network power, efficiency, and quality g
service to be critical. We also expect micronets to provide

new opportunities in other aspects of distributed systech a

processor design. As an example, we are currently examin
how micronet flow control can help reduce area overheads of
distributed memory ordering hardware.

(1]

(2]

(3]

(4

(5]
(6]

(7]

(8]

El

REFERENCES

V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burgé&lock Rate
Versus IPC: The End of the Road for Conventional Microaedttiires,”
in 27th International Symposium on Computer ArchitectureCA%
2000, pp. 248-259.

E. Sprangle and D. Carmean, “Increasing Processor Pesitce by
Implementing Deeper Pipelines,” i80th International Symposium on
Computer Architecture (ISCAR002, pp. 25-34.

R. Tomasulo, “An Efficient Algorithm for Exploring Mulgile Arithmetic
Units,” IBM Journal of Research and Developmewtl. 11, no. 1, pp.
25-33, Jan. 1967.

S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, “The Anayom
of the Register File in a Multiscalar Processor,” 27th ACM/IEEE
International Symposium on Microarchitecture (MICR®994, pp. 181—
190.

R. Kessler, “The Alpha 21264 MicroprocessotZEE Micro, vol. 19,
no. 2, pp. 24-36, 1999.

S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter, A. Clggnand
W. S. Lee, “Exploiting Fine-grain Thread Level Paralleliem the MIT
Multi-ALU Processor,” in25th International Symposium on Computer
Architecture (ISCA)1998, pp. 306-317.

E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Leé,Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, andganal,
“Baring It All to Software: RAW Machines,'EEE Computer vol. 30,
no. 9, pp. 86-93, September 1997.

C. F. Joerg and G. A. Boughton, “The Monsoon InterconioectNet-
work,” in IEEE International Conference on Computer Design (ICCD)
1991, pp. 156-159.

S. Swanson, A. Putnam, M. Mercaldi, K. Michelson, A. Psta,
A. Schwerin, M. Oskin, and S. Eggers, “Area-Performanced@vaffs
in Tiled Dataflow Architectures,” irB3rd International Symposium on
Computer Architecture (ISCAR006, pp. 314-326.

[17]

g
[20]

[21]

22]

Operand Networks: On-Chip Interconnect for ILP in Pantigd Archi-
tecture,” in 9th International Symposium on High-Performance Com-
puter Architecture (HPCA)2003, pp. 341-353.

K. Sankaralingam, V. A. Singh, S. W. Keckler, and D. Beng'Routed
Inter-ALU Networks for ILP Scalability and Performancefi IEEE
International Conference on Computer Design (ICCRQO3, pp. 170—
177.

T. M. Pinkston and J. Shin, “Trends toward on-chip ne&eo microsys-
tems,” Int. J. High Performance Computing and Networkingl. 3,
no. 1, pp. 3-18, 2005.

“International technology roadmap for
tors (ITRS), 2003 edition.” [Online].
http://public.itrs.net/Files/2003ITRS/Home2003.htm
W. J. Dally and B. Towles, “Route Packets, Not Wires: Ohip Inter-
connection Networks,” irB8th Design Automation Conference (DAC)
2001, pp. 684—689. B

S. Kumar, A. Jantsch, M. Millberg, Dberg, J.-P. Soininen, M. Forsell,
K. Tiensyrja, and A. Hemani, “A Network on Chip Architectuand
Design Methodology,” inEEE Computer Society Annual Symposium
on VLSI (ISVLSI)2002, pp. 117-124.

D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. KJohn,
C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, anbet
TRIPS Team, “Scaling to the End of Silicon with EDGE Architees,”
IEEE Computervol. 37, no. 7, pp. 44-55, July 2004.

K. Sankaralingam, R. Nagarajan, P. Gratz, R. Desikan, QDlati,

H. Hanson, C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan,
S. Sharif, P. Shivakumar, W. Yoder, R. McDonald, S. Keckkend
D. Burger, “The Distributed Microarchitecture of the TRIFP®ototype
Processor,” i39th ACM/IEEE International Symposium on Microarchi-
tecture (MICRO) 2006.

L.-S. Peh and W. J. Dally, “Flit-Reservation Flow Caiff in 6th
International Symposium on High-Performance Computetiecture
(HPCA), 2000, pp. 73-84.

A. R. Weiss, “The Standardization of Embedded Benclkingr Pitfalls
and Opportunities,” inlEEE International Conference on Computer
Design (ICCD) 1999, pp. 492-498.

J. L. Henning, “SPEC CPU2000: Measuring CPU Performaimcthe
New Millennium,” IEEE Computervol. 33, no. 7, pp. 28-35, 2000.

A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: A New SEBench-
mark Workload for Simulation-Based Computer ArchitectResearch,”
Computer Architecture Lettersol. 1, 2002.

P. Gratz, C. Kim, R. McDonald, S. W. Keckler, and D. Butge
“Implementation and Evaluation of On-Chip Network Arclotigres,”

in IEEE International Conference on Computer Design (ICCE)O06.

semiconduc-
Available:

