
Appears in the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT 2004)

Static Placement, Dynamic Issue (SPDI) Scheduling for EDGE Architectures

Ramadass Nagarajan Sundeep K. Kushwaha Doug Burger Kathryn S. McKinley
Calvin Lin Stephen W. Keckler

Computer Architecture and Technology Laboratory
Department of Computer Sciences
The University of Texas at Austin

cart@cs.utexas.edu - www.cs.utexas.edu/users/cart

Abstract

Technology trends present new challenges for processor ar-
chitectures and their instruction schedulers. Growing tran-
sistor density will increase the number of execution units on
a single chip, and decreasing wire transmission speeds will
cause long and variable on-chip latencies. These trends will
severely limit the two dominant conventional architectures:
dynamic issue superscalars, and static placement and is-
sue VLIWs. We present a new execution model in which
the hardware and static scheduler instead work coopera-
tively, called Static Placement Dynamic Issue (SPDI). This
paper focuses on the static instruction scheduler for SPDI.
We identify and explore three issues SPDI schedulers must
consider—locality, contention, and depth of speculation.
We evaluate a range of SPDI scheduling algorithms exe-
cuting on an Explicit Data Graph Execution (EDGE) archi-
tecture. We find that a surprisingly simple one achieves an
average of 5.6 instructions-per-cycle (IPC) for SPEC2000
64-wide issue machine, and is within 80% of the perfor-
mance without on-chip latencies. These results suggest that
the compiler is effective at balancing on-chip latency and
parallelism, and that the division of responsibilities between
the compiler and the architecture is well suited to future sys-
tems.

1 Introduction

Technology trends are forcing dramatic changes in ar-
chitectures and their accompanying software. Architects
are proposing heavily partitioned execution substrates with
many ALUs to deal with limits in pipeline depth, clock rate
growth [13, 30], and slowing of on-chip wires [1, 12]. To
achieve high performance, these architectures must execute
many instructions in parallel and tolerate multi-cycle on-
chip delays between dependent producing and consuming
instructions. The solution this paper explores is to expose
placement of instructions on a grid of ALUs to the compiler,
thereby allowing schedulers to expose parallelism and to

minimize the physical distances that operands must travel.
Instruction scheduling is a mature area that researchers have
studied extensively in the context of conventional VLIW
and superscalar architectures. Researchers have particularly
focused on VLIW schedulers because of the central role that
they play in obtaining good VLIW performance.

However, conventional architectures and their schedulers
are ill equipped to solve these emerging problems. VLIW
architectures [7, 9, 14, 18, 26], including EPIC architec-
tures [29], use an execution model in which the compiler
chooses both the order and the ALU on which to issue each
instruction. Despite techniques to move instructions across
branches, such as predication [22], trace scheduling [8], and
region formation [11], instruction schedulers often cannot
find enough instructions to pack into each VLIW instruc-
tion. In addition, instructions with unpredictable latency,
such as load misses, stall the entire VLIW execution engine.

Conversely in the superscalar execution model, the hard-
ware dynamically chooses from a finite issue window both
the execution order and the placement of instructions onto
ALUs. Centralized superscalar processor are limited be-
cause of the quadratic hardware required for both the is-
sue width and window size [24, 1] to check for data de-
pendences and broadcasts results. While researchers have
proposed clustered (partitioned) superscalar architectures to
improve their scalability, the hardware instruction steering
algorithms are limited by the necessarily local scope of the
dynamic placement hardware. In addition, the instruction-
set-architecture cannot encode instruction placement, which
cripples the scheduler’s effectiveness.

We observe that the scheduling problem can be broken
into two components: instruction placement and instruc-
tion issue. VLIW processors use both static issue (SI)
and static placement (SP), so we classify them as using an
SPSI scheduling model. Out-of-order superscalar architec-
tures, conversely, use a DPDI model: they rely on both dy-
namic placement (DP), since instructions are dynamically
assigned to appropriate ALUs, and dynamic issue (DI).

For VLIW processors, the static issue is the limiting fac-

tor for high ILP, whereas for superscalar processors, poor
dynamic placement limits their ability to handle growing
wire delays. On the other hand, static placement makes
VLIW a good match for partitioned architectures, and dy-
namic issue permits superscalar processor to exploit par-
allelism and tolerate uncertain latencies. This paper stud-
ies scheduling algorithms for machines that combine the
strengths of the two scheduling models, coupling static
placement with dynamic issue (SPDI).

Explicit Dataflow Graph Execution (EDGE) instruction
set architectures present an SPDI scheduling model [3].
These architectures have one defining characteristic: di-
rect instruction communication. The ISA directly expresses
the dataflow graph of program segments by specifying
in an instruction the physical location of its consumers.
Thus, instructions communicate directly with one another
in the common case, rather than conveying the dependences
through a shared name space, such as a register file. In an
EDGE architecture that uses the SPDI scheduling model 1

instructions execute in dataflow order, with each instruction
issuing when its inputs become available. SPDI EDGE ar-
chitectures thus retain the benefits of static placement. At
the same time, they permit dynamic issue, without the need
for complex associative issue window searches, large multi-
ported register files, and bypass networks.

The SPDI scheduling model relies on the compiler to
select the ALU on which an instruction will execute, but
it allows the hardware to issue the instruction dynami-
cally as soon as its operands become available. The SPDI
scheduler must balance the reduction of communication
latencies—on a topology with non-uniform latencies to
different resources—with the exposure of instruction-level
parallelism by both minimizing ALU contention and max-
imizing instruction density, the number of instructions that
can be fit into the issue window. We show that on one SPDI
EDGE machine (the TRIPS Architecture [27]), a surpris-
ingly simple greedy scheduling algorithm can yield good
results with an appropriate set of placement heuristics, im-
proving performance by 29% over a naive greedy sched-
uler. We also show that this simple algorithm outperforms a
much more complex scheduling algorithm, the recently de-
veloped convergent scheduling framework [20] both tuned
with the same heuristics. On at 64-wide issue machine, we
achieve 5.6 IPC and are within 80% of the performance of
an idealized machine without on-chip latency. We conclude
that by separating placement and issue, SPDI schedulers for
EDGE architectures can mitigate ILP losses due to wire-
dominated communication on a high-ILP substrate.

The remainder of this paper is organized as fol-

1EDGE architectures that use other execution models are certainly pos-
sible; for example, WaveScalar [32] can be characterized as a DPDI EDGE
architecture. The RAW architecture [34] is arguably an SPSI EDGE archi-
tecture, since it supports direct communication from one ALU to another
on a remote tile.

lows. Section 2 draws the distinction between VLIW and
EDGE/SPDI scheduling and describes the variant of the
TRIPS architecture that provides context for this paper.
Section 3 describes the baseline top-down greedy schedul-
ing algorithm and presents instruction placement optimiza-
tions to reduce communication latency, while exploiting
parallelism. Section 4 presents our evaluation methodology.
Section 5 evaluates different placement optimizations and
determine a good set of heuristics for an EDGE SPDI sched-
uler, computes a performance upper bound, compares our
scheduler with convergent scheduling, and explores sched-
ule density versus latency minimization. We contrast the
EDGE SPDI scheduler with previous work in Section 6.

2 Static-Placement Dynamic-Issue Sched-
ulers

An SPDI scheduling model couples compiler-driven place-
ment of instructions with hardware-determined issue order,
striking a balance between the runtime flexibility of super-
scalar processors (DPDI) and the hardware simplicity of
VLIW processors (SPSI).

To demonstrate the principal differences between VLIW
and SPDI scheduling and execution, Figure 1 compares
these two models using a simple two-ALU architecture.
The left column shows a sequence of instructions and its
corresponding dataflow graph. The VLIW scheduler as-
signs the instructions to time slots within the ALUs and uses
NOP placeholders to enforce the pipeline hazards, which
in this case are due to a predicted one-cycle cache hit la-
tency on the load (LD) instructions. Assuming that both
LD instructions miss in the cache and incur a two-cycle
miss penalty, the VLIW processor must stall the pipeline
at or before the consuming instruction, resulting in a nine-
cycle execution time for this sequence. The SPDI sched-
uler instead packs the instructions, eliminating the VLIW
placeholders, and relies on the dynamic issue logic to deter-
mine when instructions should issue. At runtime, the issue
logic only stalls those instructions that depend on a delayed
data value, thus allowing the two LD instructions to execute
concurrently and to overlap their miss handling times. The
resulting execution time is only seven cycles.

While both VLIW and SPDI schedulers place instruc-
tions, the SPDI execution model provides certain advan-
tages to the EDGE architecture. First, hardware hazard de-
tection logic enables the scheduler to produce more space-
efficient schedules; NOP placeholders are not required to
reserve issue time slots. Second, the scheduler need not
consider unpredictable instruction latencies, as instruction
issue on different execution units is decoupled, allowing in-
dependent instructions to continue execution even if other
instructions must wait for their producers to complete. In
fact, the SPDI model allows independent instructions on
the same execution unit to issue in any order as long as its

LD R1, R2, #0

AND R1, R1, R4

ADD R3, R4, R5

LSH R3, R3, #3

LD R6, R3, #0

SUB R7, R1, R6

LD R1, R2, #0

AND R1, R1, R4

SUB R7, R1, R6

ADD R3, R4, R5

LSH R3, R3, #3

LD R6, R3, #0

LD R1, R2, #0

AND R1, R1, R4

SUB R7, R1, R6

ADD R3, R4, R5

LSH R3, R3, #3

LD R6, R3, #0

1

2

3

4

5

6

7

8

9

LD R1, R2, #0

AND R1, R1, R4

SUB R7, R1, R6

ADD R3, R4, R5

LSH R3, R3, #3

LD R6, R3, #0

LD R1, R2, #0

AND R1, R1, R4

SUB R7, R1, R6

ADD R3, R4, R5

LSH R3, R3, #3

LD R6, R3, #0

1

2

3

4

5

6

7

Original Program

Dataflow Graph

VLIW Schedule

VLIW Execution

SPDI Schedule

SPDI Execution

LD

AND

SUB

LD

LSH

ADD
cycle cycle

Figure 1. VLIW versus SPDI scheduling and execution.

operands are ready, further freeing the scheduler to make ju-
dicious placement decisions that improve performance and
reduce contention. While the SPDI model eases certain as-
pects of scheduling, partitioned execution substrates impose
additional demands.

2.1 Execution Substrate

The TRIPS architecture is an instantiation of an EDGE ISA
that employs the SPDI execution model. Figure 2 shows the
components of a 4 � 4 TRIPS processor [27] with 16 instruc-
tion execution units connected via a thin operand routing
network. The diagram illustrates a 2-D mesh routing net-
work. Passing values between ALUs in the mesh requires a
delay that depends on the distance traveled in the network.
The instruction cache, register file, and data cache are on
the perimeter of the ALU array. Each ALU includes an in-
teger unit, a floating point unit, an operand router, and an in-
struction buffer (storage) for multiple instructions and their
operands. The scheduler specifies to the architecture which
instructions to place in each ALU’s buffer. Instructions in a
buffer may execute in any order after the operands arrive.

The TRIPS compiler generates hyperblocks [22] and
schedules each hyperblock independently. Figure 3 shows
the instructions of a hyperblock scheduled onto a 2 � 2 ex-
ecution node array (Figure 1 shows the same hyperblock.)
Three read instructions obtain the register values and for-
ward them to their consuming instructions. Similarly a
write instruction places values produced by the hyperblock
into a register. Figure 3a shows the placement of each in-
struction, and Figure 3b shows the encoding. Instructions
do not encode their source operands — they encode only the
physical locations of their dependent instructions. For ex-
ample, the add instruction placed at location [0,1,0], upon
execution, forwards its result to the LSH instruction placed
at location [1,1,0].

The hardware maps the hyperblock to the execution ar-
ray, reads the input registers from the register file, and in-

jects them into the appropriate ALUs. These values trig-
ger the firing of instructions, which on completion then dis-
tribute their results to consumer ALUs through the operand
network. Instructions that produce register outputs write
their values back to the register file. The hardware trans-
mits temporary values that are only live within a block di-
rectly from producer to consumer, without writing them to
the register file. Address computations for load and store in-
structions execute within the grid and then transmit the ad-
dresses (and data values for stores) to the data cache banks.
The cache banks send the loaded values back into the exe-
cution array via the operand network.

Each ALU contains a fixed number of instruction buffer
slots. We refer to corresponding slots across all ALUs col-
lectively as a frame. A 4 � 4 grid with 128 instruction buffer
entries at each ALU thus has 128 frames of 16 instructions
each. A subset of contiguous frames constitutes an archi-
tecture frame (A-frame), into which the compiler schedules
all instructions from a hyperblock. For example, dividing
128 frames into 8 A-frames composed of 16 physical frames
each allows the scheduler to map a total of 256 instructions
(per hyperblock) at once to the ALU array.

Similar to control speculation in superscalar processors,
the TRIPS microarchitecture speculatively selects subse-
quent hyperblocks to execute and maps and executes them
concurrently with the non-speculatively executing hyper-
block. These blocks are mapped into the A-frames not
used by the non-speculative hyperblock. The number of
instructions spanning the non-speculative and speculative
A-frames corresponds to the size of the architecture’s dy-
namic scheduling window. In superscalar processors, this
window is centralized and relatively small (80-100 instruc-
tions), while in a TRIPS-like microarchitecture this window
is distributed and can range from hundreds to tens of thou-
sands of instructions.

Since the number of frames must be fixed, the hardware
may present a trade-off between A-frame size and the num-

S

e
c
o
n
d
a
ry

C
a
c
h
e

In
te

rf
a
c
e

Router

Input ports

Output ports

Operand

buffers

Integer
FP

Frame C

Frame B

Frame A

Instruction

buffers

A
B
C

G R R R R

D

D

D

DI

I

I

I

I

EE

E

E

E

E

E

E

EE

E

E

E

E

E

E

D D-cache banks

I I-cache banks

R Register banks

E Execution node

G Global control

Figure 2. Example 4 � 4 TRIPS Processor.

ber of A-frames available for speculation. In the prototype
TRIPS architecture, A-frames sizes are fixed, with 8 frames
per 128-instruction A-frame. In this paper, we explore a
variant of the TRIPS architecture in which the compiler may
specify the number of frames in an A-frame. In this variant,
the microarchitecture can map as many hyperblocks onto
the hardware as the total number of frames can support. For
example, if four successive hyperblocks used three, four,
five and six frames respectively, a machine with 16 frames
can concurrently execute only three of those blocks. We
simulate a finite number of A-frames, however, so the hard-
ware can be running concurrently at most the same number
of hyperblocks as there are A-frames.

This variant TRIPS architecture exposes the trade-off
of frames per hyperblock to the scheduler. If the sched-
uler chooses to use more frames for a given hyperblock,
with the goal of improving the execution time on a per-
hyperblock basis, the degree of speculation may be throt-
tled, since the same number of instructions will be allo-
cated in more frames, permitting fewer total hyperblocks
to be running concurrently. Conversely, an emphasis on
deeper speculation (more speculative hyperblocks execut-
ing concurrently) reduces the number of frames available
per hyperblock, which may degrade per hyperblock execu-
tion time by increasing communication latencies, but may
improve overall performance. We explore this tradeoff fur-
ther in Section 5.3.

2.2 SPDI Scheduler Duties

Since the architecture exposes the interconnection topology
and delay, the scheduler has several additional duties:

Placement for Locality: The topology and connectivity
of the network combined with the physical distances among
the ALUs, the register file, and the cache banks determine
run-time operand latency. Maximizing performance of this
architecture requires that the scheduler select an instruction
mapping that minimizes communication latencies among
ALUs, the register file, and cache banks for dependent in-
structions.

AND

LD

SUB

ADD

LD LSH

READ R2 [0,0,0]

READ R4 [0,0,1] [0,1,0]

READ R5 [0,1,0]

LD #0 [0,0,1]

AND [1,0,1]

ADD [1,1,0]

LD #0 [1,0,0]

SUB R7

LSH #3 [1,0,1]

READ R2

READ R4

READ R5

[0,0,1] AND [0,1,1]

[0,0,0] LD [0,1,0] ADD

[1,0,1] SUB [1,1,1]

[1,0,0] LD [1,1,0] LSH

a) Instruction Placement b) Instruction Encoding

WRITE R7

Figure 3. TRIPS Instruction Encodings

Contention: Since the execution units can issue only
one instruction per cycle and since the inter-ALU operand
network has limited bandwidth, issue and network con-
tention can degrade performance. The scheduler can reduce
contention by spreading independent instructions across the
ALUs, but must balance this benefit against the goal of re-
ducing communication latencies.

Effective window size: Since the number of instruction
slots (frames) is fixed, the hardware and software must bal-
ance the architecture frame size with the number of specu-
lative frames. Larger architecture frames may enable lower
communication latencies since it gives the scheduler free-
dom in placing instructions. More instructions per archi-
tecture frames allows the architecture to speculatively ex-
ecute additional frames to exploit ILP. The challenge for
the scheduler is to create low cross-chip latency sched-
ules while allowing enough speculative frames for ILP.
While this requirement may seem somewhat specific to
block-structured EDGE architectures, the interaction be-
tween scheduling and speculation is likely to exist in other
future systems as well.

3 SPDI Scheduling Algorithms
The SPDI scheduling algorithm takes as input a group of in-
structions and a processor model description. The model in-
cludes execution latencies for different types of instructions,
interconnect topology, and communication latencies. The
scheduler outputs an assignment of instructions to ALUs.
We first describe a simple extension of a VLIW scheduler
that serves as the baseline SPDI scheduler. We then aug-
ment the algorithm with several SPDI heuristics.

3.1 Base Algorithm

The baseline SPDI scheduling algorithm resembles a sim-
ple VLIW scheduler. It computes the initial set of ready
instructions, all of which can issue in parallel. It prioritizes
instructions in the ready set and selects the highest priority
instruction for scheduling. After it schedules an instruction
i, it adds to the ready set any of i’s children whose par-
ents have all been scheduled. It selects the next instruction
for scheduling and iterates until completion. While a SPSI
VLIW scheduler assigns an instruction to an ALU and a
time slot, a SPDI scheduler assigns each instruction to an
ALU without specifying a time slot. Figure 4(a) shows the
basic algorithm.

The algorithm first determines the number of instruc-
tion slots needed to schedule a group of instructions. For
our TRIPS derivative, the scheduler determines the num-
ber of A-frames needed to accommodate the hyperblock.
For example, a hyperblock with 150 instructions requires
3 frames on an 8 � 8 array of ALUs (because 2*(8 � 8) �
150 � 3*(8 � 8)). It then sorts the instructions in a top-
down greedy order as described in the previous paragraph.
For example, the sorted order for instructions shown in
Figure 1 would be ADD, LD, LSH, AND, LD, and
SUB. The scheduler obtains this order by sorting the instruc-
tions based on their depths from the root instructions in the
dataflow graph (DFG) and breaking ties by further sorting
the instructions based on their heights from the bottom in-
structions in the DFG. To compute the depths and heights,
the scheduler assumes static instruction latencies and cache
hits. The sorted order of instructions is represented by the
list S in Figure 4.

For the unscheduled instruction i with the highest pri-
ority, the scheduler computes the set of legal instruction
slots, R, which the interconnection topology defines. Us-
ing a mesh interconnect, all instruction slots are reachable
from all others, but simpler networks with limited reacha-
bility are possible. If no instruction slot is available, the
scheduler adds to the total pool by increasing the number of
frames by one, and starts over.

For every legal instruction slot rs, the scheduler com-
putes the following expression:

ReadyTime � i � rs ��� max�
p

�
CompleteTime � p � rsp �	� Distance
 rsp � rs �
�

The term p denotes a parent of i. CompleteTime � p � rsp �

refers to the expected time at which p will produce its
results at rsp, and Distance � rsp � rs � denotes the number
of communication hops required to route p’s result to rs.
ReadyTime � i � rs � is simply the earliest time at which i can
issue at rs. To schedule i, the scheduler chooses the instruc-
tion slot rsmin at which ReadyTime is minimum. In case of
ties, it selects the location at the right most column in the
top most row.

The scheduler then marks i as scheduled and updates the
following expression:

CompleteTime � i � rsmin ��� ReadyTime � i � rsmin �	� Latency(i)

The process iterates until all instructions are scheduled.

3.2 Scheduler Optimizations

We now augment the base scheduler with five heuristics that
balance increasing parallelism and reducing latency. The
first goal attempts to place independent instructions on dif-
ferent ALUs, while the second attempts to schedule con-
sumers physically close to producers. Figure 4(b) shows
the scheduling algorithm augmented with the five heuristics
described below.

Critical path priority (C): This heuristic attempts to
prioritize instructions by critical path first over parallelism,
with the intuition that reducing the communication laten-
cies along the static critical path will improve overall per-
formance. It achieves this by sorting the instructions based
on the maximum depth of any of their descendants. In case
of ties, it further sorts them based on their heights in the
dataflow graph. For example, the sorted order for instruc-
tions in Figure 1 would be ADD, LSH, LD, SUB, LD,
and AND. This strategy provides the advantage of first se-
lecting every instruction on the critical path for scheduling.

Load balancing (B): To reduce contention for an ALU
and maximize parallelism, the scheduler places on different
ALUs instructions that it expects to be ready at the same
time. The scheduler keeps track of the cycles when an ALU
is expected to be busy executing instructions and when it is
free. These estimates do not bind the dynamic issue of in-
structions; instead they help the compiler judiciously place
instructions and reduce contention. For the candidate in-
struction i and instruction slot rs, the scheduler computes
the term Contention � i � rs � , which denotes any additional de-
lay cycles between when i is ready and when it can be issued
from rs. The scheduler then computes CompleteTime � i � rs �
as shown in Figure 4(b).

Data cache locality (L): The scheduler reduces load la-
tencies by placing loads and consumers of loads close to the
data caches. It augments the dataflow graph with a pseudo-
memory instruction m and fixes the placement of m at a po-
sition M that is one hop away from the rightmost column
of the execution array. For example, a dependence edge in
the DFG, A � B, where A is a load instruction, is changed
to A � m � B, where m is the pseudo-memory instruction.

Input: Hyperblock Instruction Set H, ALU set A
Output: H -> A

#Frames = ceil(|H|/|A|)
S = top_down_greedy_sort(H)
foreach instruction i in sorted list S {
 R = find_legal_instruction_slots(i)
 if |R|=0 {
 #Frames++, Reschedule()
 } else {
 foreach rs in R {
 compute ReadyTime(i,rs)
 }
 E = sort_by_ready_time(R)
 Schedule(i) = first_element(E)
 S = S-{i}
 }
}

(a) Base Algorithm (b) Scheduling Algorithm with Optimizations

Input: Hyperblock Instruction Set H, ALU set A
Output: H -> A

#Frames = ceil(|H|/|A|)
S = top_down_criticality_sort(H)
foreach instruction i in sorted list S {
 R = find_legal_instruction_slots(i)
 if |R|=0 {
 #Frames++, Reschedule()
 } else {
 foreach rs in R {
 compute ReadyTime(i,rs)
 IssueTime(i,rs) = ReadyTime(i,rs)+Contention(i,rs)
 CompleteTime(i,rs) = IssueTime(i,rs)+Latency(i)
 Score(i,rs) = CompleteTime(i,rs)+Lookahead(i,rs)*0.5
 }
 E = sort_by_score(R)
 Schedule(i) = first_element(E) , H = H-{i}
 S = top_down_criticality_sort(H)
 }
}

C

B

O

R

Figure 4. Scheduling Algorithms.

CompleteTime � M � m � is calculated by summing the latency
to route the address to the cache and the latency of a cache
hit.

Register Output (O): Instructions that produce register
outputs ought to be placed close to the register file. How-
ever, prior placed instructions may constrain the placement
of these instructions by occupying these desired locations.
To avoid this situation, the lookahead heuristic, in anticipa-
tion of a later but a better use, avoids using instruction slots
closer to the register file for instructions that do not produce
register outputs.

Lookahead � i � rs ��� df � i � o �
Distance(rs,Reg)

� Distance(rs,Reg)
df � i � o �

In the above expression, d f � i � o � denotes the dataflow dis-
tance between instruction i and the nearest output instruc-
tion o. Distance � rs � Reg � denotes the distance of instruc-
tion slot rs from the register file. Lookahead � i � rs � is min-
imized at a location rs, where Distance � rs � Reg � is equal
to d f � i � o � . For every dataflow chain, the heuristic thus at-
tempts to place instructions across slots by starting farthest
from the register file and gradually moving closer to the reg-
ister file.

The scheduler computes a final score for an instruction
i at a location rs as shown in Figure 4. In this score, the
lookahead factor is weighted by a factor of 0.5, which of-
fered the best performance in our experiments. Finally, it
schedules i at the instruction slot with the lowest score.

Critical path re-ordering (R): Since the position of an
instruction can alter critical paths through the hyperblock,
the scheduler re-computes the critical path and re-prioritizes
the unscheduled instructions. It then selects the next in-
struction to schedule and iterates until completion

4. Evaluation Methodology
To compare performance across different schedules, we
measure instructions per cycle (IPC) using a cycle-by-cycle
timing simulator. We model a TRIPS-like architecture with

an 8 � 8 array of ALUs. We model a total of 128 reservation
stations at each ALU, separate 64KB two-way, three-cycle
primary instruction and data caches, a 13-cycle miss penalty
to a 2MB two-way L2 cache, a 132-cycle main memory ac-
cess penalty, 0.5 cycles per hop in the ALU array, a 250Kb
exit branch predictor, and a 20-cycle branch misprediction
penalty. Optimistic assumptions include no modeling of
TLBs or page faults, simulation of a centralized register
file, and no issue of wrong path instructions to the mem-
ory system. We leave these additions for future work. We
also assume an oracular load/store disambiguation mecha-
nism. Experiments with a realistic disambiguation mecha-
nism show trends similar to results presented in this paper,
and run on average 18% slower than the oracular mecha-
nism.

We added a TRIPS scheduler to the Trimaran compiler
tool set, which is based on the Illinois Impact compiler [4].
Trimaran applies aggressive VLIW optimizations and pro-
duces code in the Elcor intermediate format, based on the
Hewlett-Packard PD [33] instruction set. In addition to
the usual set of classic optimizations, Trimaran incorpo-
rates many VLIW-specific optimizations such as control
flow profiling, trace scheduling, loop unrolling, peeling,
software pipelining with modulo scheduling, speculative
hoisted loads, predication with acyclic scheduling of hyper-
blocks and control height reduction. We have not yet tuned
these optimizations for our TRIPS-like architecture.

We target a set of architectural models by using a sched-
uler that converts the Elcor output into TRIPS code. The
scheduler models the connectivity and latencies of the 2-D
Mesh network. We assume the latencies to be 0.5 cycle per
hop (0.25 cycle wire and 0.25 fan-in/fan-out). The sched-
uler does not model contention in the network but the sim-
ulator does.

The experiments use the SPEC2000 [31] and Media-

bench base C CR CRB CRBL CRBLO RBLO convergent Upper bound
mcf 0.86 0.95 0.87 0.90 0.85 0.98 0.91 0.70 1.01

adpcm 1.16 1.07 1.07 1.11 1.19 1.18 1.17 0.96 1.47
compr 1.36 1.34 1.31 1.36 1.44 1.42 1.45 1.33 1.75
parser 1.36 1.35 1.34 1.35 1.43 1.45 1.49 1.24 1.79
gzip 1.79 1.78 1.78 1.80 1.92 1.92 1.96 1.58 2.44
twolf 1.88 1.84 1.86 1.88 1.99 2.02 2.02 1.82 2.40

m88ksim 2.29 2.36 2.35 2.25 2.47 2.50 2.49 2.15 3.22
bzip2 2.54 2.30 2.63 2.65 2.88 2.91 2.86 2.71 3.39

equake 2.57 2.53 2.62 2.70 2.68 2.86 2.86 2.63 3.19
turb3d 3.61 3.66 3.74 4.28 4.77 4.59 4.00 4.25 6.59

hydro2d 3.88 3.54 3.87 4.22 4.24 4.20 3.99 4.02 6.24
mpeg2 3.95 3.27 3.34 3.93 3.97 3.99 4.06 3.38 4.96

art 5.14 4.88 4.95 4.99 5.17 5.24 5.23 4.66 5.72
ammp 5.38 4.86 4.96 5.76 5.93 6.12 6.25 5.60 7.09
vortex 5.56 5.71 5.77 5.93 6.38 6.54 6.57 6.09 7.87

tomcatv 9.46 7.49 9.84 11.44 12.06 14.44 13.21 13.70 18.39
swim 9.96 7.00 12.39 13.87 14.57 16.19 15.26 10.20 21.33
mgrid 10.99 8.24 11.46 13.47 14.95 15.08 17.90 13.48 19.20

dct 11.10 10.70 13.53 17.13 16.06 16.41 15.78 14.24 20.45
HMEAN 2.52 2.45 2.49 2.59 2.69 2.78 2.74 2.36 3.33
AMEAN 4.37 3.87 4.61 5.18 5.38 5.64 5.61 4.85 7.09

Table 1. Performance improvements from scheduler optimizations.

bench [19] benchmark suites. The Trimaran front end cur-
rently compiles only C benchmarks, so we convert a num-
ber of the SPECFP benchmarks to C, and we present results
for all of the SPEC benchmarks that the Trimaran tools suc-
cessfully compile.

5 Results

In this section we demonstrate the effectiveness of different
compiler heuristics and show how the scheduler can balance
reduced latency with better speculation depth to attain better
performance. We also compare the SPDI scheduling algo-
rithm with an implementation of the convergent scheduling
framework [20] and find that the framework does not of-
fer any improvements over the best set of SPDI scheduler
heuristics.

5.1 Scheduler Evaluation

This section evaluates the scheduler heuristics from Sec-
tion 3, using the TRIPS-like microarchitecture with the 2-D
mesh inter-ALU network described earlier. We start with
the baseline TRIPS scheduler, Base, which is similar to a
greedy VLIW scheduler, and then progressively add the op-
timizations discussed in Section 3.2. Table 1 presents the
performance results of these optimizations applied in dif-
ferent combinations. The column labeled convergent shows
the results for Convergent scheduling, described in Sec-
tion 5.2. The last column shows the results for a config-
uration where all communication latencies are zero. This
column represents a loose upper bound on performance for
the schedule of a given hyperblock. Across each row, the
table shows the best-performing (non-upper bound) config-
uration in bold.

We examine the effect of instruction priority in the

scheduling algorithm by comparing the greedy ordering
(Base), the criticality ordering (C), and criticality with re-
computation of the critical path during scheduling (CR). In
the absence of other optimizations, greedy outperforms crit-
icality ordering. However, recomputing the critical path at
every iteration improves criticality order, yielding the best
performance on nine of the 19 benchmarks. This heuristic
achieves 5.5% improvement over the baseline and 19% im-
provement over the critical-path ordering. We also observed
in other experiments that recomputing instruction priorities
with greedy ordering performed slightly worse than CR.
Recomputing the critical paths after each instruction place-
ment minimizes dilation of any secondary critical paths and
yields consistently better performance.

Augmenting the scheduler with a contention model to
improve load balance across the ALUs (CRB) improves per-
formance significantly in high ILP benchmarks—tomcatv,
swim, mgrid, and dct. This optimization explicitly attempts
to migrate independent instructions to different ALUs, but
only after first optimizing the critical path. The interaction
of this optimization with the critical path heuristic shows
that it is easier for the scheduler to exploit parallelism af-
ter minimizing latency than vice versa. Intuitively this re-
sult makes sense because given a minimal-latency place-
ment, the scheduler can hide the latency of instructions that
have ILP with those already placed. If the scheduler places
parallel instructions first, they can force non-essential la-
tencies for critical instructions. Averaged across the entire
benchmark suite, this optimization improves performance
by 12.4% over critical path re-computation (CR).

The locality-aware optimizations bias the placement of
load instructions (CRBL) and instructions that write to the
register file (CRBLO). Table 1 shows that they also consis-

tently improve performance, with large gains on 12 bench-
marks. Further analysis reveals that there were signifi-
cant reductions in load-to-use latencies. Lookahead op-
timizations for register outputs (CRBLO) offer additional
improvements of 5% on the average. Placing the output
instructions closer to the register file reduces latencies on
critical paths that span block boundaries.

An optimal schedule for a given hyperblock tries to place
instructions on ALUs such that back-to-back instructions on
the critical path always execute in successive cycles. To
estimate the performance of this schedule, we simulated
the CRBLO schedules on a TRIPS configuration where all
ALU-to-ALU communication latencies are zero. These re-
sults are shown in the last column of Table 1. We find
that the performance achieved by the CRBLO schedules
are within 80% of the upper bound, proving that a simple
set of heuristics is fairly effective in achieving near-optimal
schedules. We note the upper bound shown here is spe-
cific to a given set of hyperblocks. A different compilation
strategy that results in different hyperblocks could improve
performance well beyond this upper bound.

5.2 Comparisons with Convergent Scheduling

The scheduling algorithms described thus far tightly inte-
grate all heuristics within one single algorithm. A compet-
ing approach that decouples different scheduler optimiza-
tions through a flexible interface is Convergent Schedul-
ing [20], which has been proposed as a framework for clus-
tered architectures. The framework composes independent
phases that each address a particular constraint. All phases
share a common interface that contains the current spatial
and temporal preferences for a scheduling unit. A phase
operates by analyzing the current preferences and modify-
ing it by applying its heuristics. The scheduler applies the
phases successively, one or more times and in any order un-
til it converges on a final schedule. Lee et al. show that
this scheduling approach works well on clustered-VLIW
and RAW architectures [20].

We implemented the convergent scheduling algorithm
for TRIPS and compared the results with our approach. Un-
like VLIW architectures, temporal scheduling preferences
are not required for TRIPS, so only spatial preferences are
communicated between the different phases. We apply the
following phases successively for each block.

� Parallelism optimizations: noise introduction, load
balancing for parallelism.

� Placement optimizations: preplacement, preplacement
propagation for loads, load consumers, and instruc-
tions that need to access the register file.

� Latency optimizations: communication minimization,
critical path strengthening, path propagation.

We extensively tuned confidence measures for the place-
ment optimizations and latency optimizations. Table 1

bench Sparse-5 Sparse-200 Dense-500 Dense-∞
mcf 1.04 1.06 0.98 0.98

adpcm 1.16 1.18 1.18 1.18
compr 1.48 1.48 1.42 1.42
parser 1.49 1.48 1.45 1.45
gzip 1.96 2.00 1.92 1.92
twolf 2.05 2.04 2.03 2.02

m88ksim 2.39 2.49 2.50 2.50
bzip2 2.87 2.96 2.91 2.91

equake 2.74 2.89 2.86 2.86
turb3d 4.55 4.62 4.67 4.59

hydro2d 4.62 4.18 4.20 4.20
mpeg2 3.79 3.99 3.99 3.99

art 4.79 5.23 5.23 5.24
ammp 5.78 6.11 6.12 6.12
vortex 6.04 6.30 6.51 6.54

tomcatv 9.75 13.49 14.44 14.44
swim 13.50 16.19 16.19 16.19
mgrid 9.98 15.13 15.08 15.08

dct 16.29 17.17 16.41 16.41
HMEAN 2.76 2.84 2.78 2.78

Table 2. Trade-offs of scheduling for utiliza-
tion versus communication

shows the results for the best performing convergent
scheduling heuristics. We see that convergent scheduling
performs less well than the best TRIPS scheduling algo-
rithm, achieving 15% lower IPC on average. A dynamic
critical path analysis reveals that while convergent schedul-
ing reduces latencies for loads, for load consumers, and for
instructions that frequently access the register file, it typi-
cally does so at the cost of increased ALU to ALU operand
communication latencies, which the TRIPS scheduler usu-
ally avoids.

5.3 Code Density Optimizations

This section evaluates the trade-off between communication
latencies within a block and ILP from increased specula-
tion depth. As described in Section 2, the use of a small
number of frames for a block enables the runtime to map
and execute a higher number of speculative blocks, exploit-
ing cross-block parallelism at the expense of longer latency
for a single block. Fewer frames result in denser schedules
and have the benefit of good instruction memory perfor-
mance, increasing I-cache hit rates and improving I-cache
bandwidth utilization. By contrast, the use of more frames
creates more opportunities to schedule critical path instruc-
tions on the same ALU, thus minimizing communication
latencies along the critical path. We apply a density opti-
mization heuristic that explores this trade-off and automati-
cally determines the best number of frames for scheduling.

The density optimization attempts to schedule a block
with the minimum number of frames. It iteratively incre-
ments the number of frames by one and reschedules the
block until the post-schedule critical path length is within
a threshold factor of the unscheduled critical path length or

until the schedule remains unchanged in successive itera-
tions. Table 2 shows the performance obtained for differ-
ent values of the threshold factor. The first column shows
the performance with the sparsest schedules (threshold = 5)
while the last column shows the performance with the dens-
est schedules (threshold = ∞). Threshold defines the maxi-
mum percentage increase from the unscheduled critical path
length.

Table 2 shows that a threshold factor of 200 achieves best
or near-best performance on most benchmarks. It is signif-
icantly better than the sparsest schedules on 9 benchmarks
and worse in only one (hydro2d). It is significantly better
than the densest schedules in four benchmarks (compress,
dct, gzip, mcf) and worse in one (tomcatv), because the ar-
chitecture tolerates latencies well within a block. These re-
sults show that the scheduler’s ability to carefully trade-off
increases in the critical path with density is key to attaining
the best performance.

6 Related Work

Instruction scheduling is a mature and well-researched area.
In this section, we discuss only prior art related to static
scheduling.

VLIW: A classic VLIW scheduler [5, 9] uses a bottom-
up-greedy (BUG) approach to pack parallel instructions into
a long instruction. VLIW schedulers take an aggressive ap-
proach to building large basic blocks, including predica-
tion [2, 22, 28], but use similar BUG heuristics to select
and place instructions in the schedule. Our scheduler also
operates on predicated hyperblocks, but it considers addi-
tional constraints, such as on-chip latencies between func-
tional units and variable latencies from the memory hierar-
chy.

Partitioned VLIW: The SPDI scheduling problem
bears the most resemblance to scheduling for a partitioned
VLIW [15, 17, 20, 23, 25, 35, 10]. For RAW, which uses a
2-D VLIW execution model, the convergent scheduler han-
dles complexity by computing an ALU preference for each
scheduling heuristic [20]. These preferences are weighted,
and because of the execution model parallelism is favored
over latency. Ozer et al. solve the scheduling part of VLIW
cluster assignment and leave the register assignment to a
later phase using the UAS approach [23]. They find that
placing critical paths in the same cluster is best in their
setting. The CARS approach is similar to UAS but per-
forms register allocation concurrently with scheduling and
has lower algorithmic complexity [15].

In comparison to VLIW approaches, EDGE architec-
tures using SPDI scheduling provide two major features that
improve the effectiveness of the scheduler. First, the sched-
uler is freed from some of the burden of register allocation
due to direct communication between ALUs, which reduces
register pressure. This dedicated storage for temporaries al-

lows the scheduler to focus solely on instruction placement
and scheduling. Second, the SPDI execution model handles
variable and unknown instruction and memory latencies at
runtime, freeing the scheduler to achieve other goals such
as instruction density, high instruction concurrency, and low
instruction communication overhead.

Superscalar: The superscalar execution model is de-
signed to tolerate variable and unknown latencies. How-
ever, compile-time schedulers can improve performance by
ensuring that the hardware scheduler sees a set of instruc-
tions that exhibit both concurrency and latency tolerance.
For instance, the balanced scheduler of Kerns and Eggers
spreads ILP to cover variable latencies in a superscalar ex-
ecution model, resulting in a schedule with available ILP
spread evenly between load instructions [16]. Later work
spread ILP to the loads with the highest latencies [21]. Clus-
tered superscalar processors present to the hardware sched-
uler the same problems of load balancing and latency toler-
ance that clustered VLIWs present to software schedulers.
Farkas attempts to reduce intercluster communication in
a clustered superscalar using compile-time cluster assign-
ment [6]. However, performance gains are underwhelming,
in part because the scope of scheduling is limited to basic
blocks, rather than the larger regions of instructions avail-
able with hyperblock formation techniques.

7 Conclusions

Conventional architectures sit at opposite ends of the
spectrum with regard to their demands on the scheduler.
While superscalar architectures can improve some sched-
ules through dynamic scheduling hardware and can see
some benefit from good instruction schedulers, perfor-
mance is ultimately constrained by the limited instruction
window size. VLIW architectures require the compiler to
place every instruction and schedule every latency. In the
face of variable memory latencies, the VLIW scheduler al-
ways fails. A hybrid approach that allows the scheduler
to place instructions for good locality while also allowing
the hardware to dynamically execute the instructions (over-
lapping instruction latencies and other unknown latencies)
produces better performance and scalable hardware. Such
approaches will become even more important as technology
trends make communication more critical due to increased
wire delays.

We have implemented and evaluated a scheduler for such
an emerging architecture. Because the hardware dynami-
cally executes the instructions, the scheduler is freed from
the burden of precise scheduling constraints. Instead its
job is to expose the concurrency in the instruction stream
and place the instructions to minimize communication over-
heads. This EDGE scheduling algorithm is able to auto-
matically schedule into the appropriate number of instruc-
tion slots, while still reducing average operand latency and

balancing the load across the ALUs, thus eliminating hot
spots where too many independent instructions have been
placed. The SPDI execution model uses this schedule to
opportunistically exploit ILP to tolerate variable latencies
in its distributed issue window.

We have evaluated our scheduler on a 64-issue processor
and shown the interplay between hardware constraints and
the scheduler’s capabilities. We show that for the EDGE
architecture that we study, a simple scheduler with well-
chosen heuristics outperforms a more sophisticated sched-
uler. We show that iteratively updating the estimated criti-
cal path during the instruction placement process provides
a 19% boost in performance over a single priority listing.
By balancing load after scheduling critical path instructions,
parallelism can be exploited without introducing unnec-
essary latencies, improving performance by an additional
12%. We demonstrate that accounting for distances, not
just between ALUs, but also to the register file and cache
banks, is critical as it improves performance by 9%. A lin-
ear application of all these heuristics performs within 80%
of an optimistic upper bound.

Combining the strengths of static scheduling with the ad-
vantages of dynamic issue will be critical to achieving high
performance in emerging wire-dominated technologies, es-
pecially as power ceilings limit the ability of RISC and
CISC-like architectures to issue instructions dynamically.

Acknowledgments
This research is supported by the Defense Advanced Re-
search Projects Agency under contracts F33615-01-C-1892
and F33615-03-C-4106, NSF grants EIA-0303609, CCR-
9985109, CCR-9984336, CCR-0085792, CCR-0311829,
ACI-0313263, three IBM faculty partnership awards, and a
grant from the Intel Research Council. Any opinions, find-
ings and conclusions expressed herein are the authors and
do not necessarily reflect those of the sponsors.

References
[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock

rate versus IPC: The end of the road for conventional microarchitec-
tures. In Proceedings of the 27th Annual International Symposium
on Computer Architecture, pages 248–259, June 2000.

[2] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier,
B.-C. Cheng, P. R. Eaton, Q. B. Olaniran, and W. W. Hwu. Integrated
predicated and speculative execution in the IMPACT EPIC architec-
ture. In Proceedings of the 25th International Symposium on Com-
puter Architecture, pages 45–54, July 1998.

[3] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,
C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and the
TRIPS Team. Scaling to the end of silicon with EDGE architectures.
IEEE Computer, 37(7):44–55, July 2004.

[4] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W.
Hwu. IMPACT: An architectural framework for multiple-instruction-
issue processors. In Proceedings of the 18th Annual International
Symposium on Computer Architecture, pages 266–275, May 1991.

[5] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press,
1986.

[6] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The multiclus-
ter architecture: Reducing cycle time through partitioning. In Pro-
ceedings of the 30rd International Symposium on Microarchitecture,
pages 149–159, December 1997.

[7] J. Fisher. Very long instruction word architectures and the ELI-
512. In Proceedings of the Tenth Annual International Symposium
on Computer Architecture, pages 140–150, June 1983.

[8] J. A. Fisher. Trace scheduling: A technique for global microcode
compaction. IEEE Transactions on Computers, C-30(7):478–490,
July 1981.

[9] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau. Parallel
processing: A smart compiler and a dumb machine. In Proceedings
of the SIGPLAN ’84 Symposium on Compiler Construction, pages
37–47, June 1984.

[10] E. Gibert, J. Sanchez, and A. Gonzalez. Effective instruction
scheduling techniques for an interleaved cache clustered VLIW pro-
cessor. In Proceedings of the 35th annual ACM/IEEE international
symposium on Microarchitecture, pages 123–133, 2002.

[11] W. Havanki, S. Banerjia, and T. Conte. Treegion scheduling for wide-
issue processors. In Proceedings of the Fourth International Sympo-
sium on High-Performance Computer Architecture, pages 266–276,
January 1998.

[12] M. Horowitz, C.-K. K. Yang, and S. Sidiropoulos. High-speed elec-
trical signaling: overview and limitations. In IEEE Micro, pages
12–24, January 1998.

[13] M. Hrishikesh, N. Jouppi, K. Farkas, D. Burger, S. Keckler, and
P. Shivakumar. The optimal logic depth per pipeline stage is 6 to
8 FO4 inverter delays. In Proceedings of the 29th International Sym-
posium on Computer Architecture, pages 14–24, May 2002.

[14] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and R. Zahir. In-
troducing the IA-64 architecture. IEEE Micro, 20(5):12–23, Septem-
ber/October 2000.

[15] K. Kailas, K. Ebcioglu, and A. K. Agrawala. CARS: A new code
generation framework for clustered ILP processors. In Proceedings
of the Seventh International Symposium on High-Performance Com-
puter Architecture, pages 133–143, January 2001.

[16] D. R. Kerns and S. Eggers. Balanced scheduling: Instruction
scheduling when memory latency is uncertain. In Proceedings of the
SIGPLAN ’93 Conference on Programming Language Design and
Implementation, pages 278–289, June 1993.

[17] C. Kessler and A. Bednarski. Optimal integrated code generation
for clustered VLIW architectures. In Proceedings of the Joint Con-
ference on Languages, Compilers and Tools for Embedded Systems,
pages 102–111, June 2002.

[18] M. Lam. Software pipelining: An effective scheduling technique for
VLIW machines. In Proceedings of the SIGPLAN ’88 Conference
on Programming Language Design and Implementation, pages 318–
328, June 1988.

[19] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems. In International Symposium on Microarchitecture, pages
330–335, December 1997.

[20] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Convergent
scheduling. In Proceedings of the 35th Annual International Sympo-
sium on Microarchitecture, pages 111–122, November 2002.

[21] G. Lindenmaier, K. S. McKinley, and O. Temam. Load scheduling
with profile information. In A. Bode, T. Ludwig, and R. Wismüller,
editors, Euro-Par 2000 – Parallel Processing, volume 1900 of Lec-
ture Notes in Computer Science, pages 223–233, Munich, Germany,
Aug. 2000. Springer-Verlag.

[22] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann. Effec-
tive compiler support for predicated execution using the hyperblock.
In Proceedings of the 25th Annual International Symposium on Mi-
croarchitecture, pages 45–54, June 1992.

[23] E. Ozer, S. Banerjia, and T. M. Conte. Unified assign and schedule:
A new approach to scheduling for clustered register file microarchi-
tectures. In International Symposium on Microarchitecture, pages
308–315, December 1998.

[24] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective
superscalar processors. In Proceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture, pages 206–218, June
1997.

[25] Y. Qian, S. Carr, and P. Sweany. Optimizing loop performance for
clustered VLIW architectures. In The 2002 International Conference
on Parallel Architectures and Compilation Techniques, pages 271–
280, Sept. 2002.

[26] B. Rau. Dynamically scheduled VLIW processors. In Proceedings
of the 26th Annual International Symposium on Microarchitecture,
pages 80–90, December 1993.

[27] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. Moore. Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture. In Proceedings of the 30th
Annual International Symposium on Computer Architecture, pages
422–433, May 2003.

[28] M. Schlansker, S. Mahlke, and R. Johnson. Control CPR: A branch
height reduction optimization for EPIC architectures. In Proceedings
of the ACM SIGPLAN’99 Conference on Programming Language
Design and Implementation, pages 155–168, June 1999.

[29] M. S. Schlansker and B. R. Rau. EPIC: Explicitly parallel instruction
computing. IEEE Computer, 33(2):37–45, 2000.

[30] E. Sprangle and D. Carmean. Increasing processor performance by
implementing deeper pipelines. In Proceedings of the 29th Inter-
national Symposium on Computer Architecture, pages 25–34, May
2002.

[31] Standard Performance Evaluation Corporation. SPEC CPU 2000,
http://www.spec.org/osg/cpu2000, April 2000.

[32] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar.
In Proceedings of the 36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 291–302, 2003.

[33] V.Kathail, M.Schlansker, and B.R.Rau. HPL-PD architecture spec-
ification: Version 1.1. Technical Report HPL-93-80(R.1), Hewlett-
Packard Laboratories, February 2000.

[34] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarsinghe, and
A. Agarwal. Baring it all to software: RAW machines. IEEE Com-
puter, 30(9):86–93, September 1997.

[35] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Software and hard-
ware techniques to optimize register file utilization in VLIW archi-
tectures. In Proceedings of the International Workshop on Advanced
Compiler Technology for High Performance and Embedded Systems
(IWACT), July 2001.

