"Thinking like a computer scientist means more than being able to program a computer. It requires thinking at multiple levels of abstraction."

Jeannette M. Wing, Ph.D.
Director, Data Science Institute, Columbia University
Corporate Vice President, Microsoft Research (past)

Based on slides by Marty Stepp and Stuart Reges from http://www.buildingjavaprograms.com/
double squareRoot = Math.sqrt(121.0);
System.out.println(squareRoot); // 11.0

int absoluteValue = Math.abs(-50);
System.out.println(absoluteValue); // 50

System.out.println(Math.min(3, 7) + 2); // 5
What is output by the following code?

double a = -1.9;
double b = 2.25;
System.out.println(Math.floor(a) + " "+ Math.ceil(b));

A. 1.0
B. -1.0 3.0
C. 1 3
D. -1 3
E. -2.0 3.0
Java's `Math` class

<table>
<thead>
<tr>
<th>Method name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Math.abs(value)</code></td>
<td>absolute value</td>
</tr>
<tr>
<td><code>Math.ceil(value)</code></td>
<td>moves up to ceiling</td>
</tr>
<tr>
<td><code>Math.floor(value)</code></td>
<td>moves down to floor</td>
</tr>
<tr>
<td><code>Math.log10(value)</code></td>
<td>logarithm, base 10</td>
</tr>
<tr>
<td><code>Math.max(value1, value2)</code></td>
<td>larger of two values</td>
</tr>
<tr>
<td><code>Math.min(value1, value2)</code></td>
<td>smaller of two values</td>
</tr>
<tr>
<td><code>Math.pow(base, exp)</code></td>
<td><code>base</code> to the <code>exp</code> power</td>
</tr>
<tr>
<td><code>Math.random()</code></td>
<td>random double between 0 and 1</td>
</tr>
<tr>
<td><code>Math.round(value)</code></td>
<td>nearest whole number</td>
</tr>
<tr>
<td><code>Math.sqrt(value)</code></td>
<td>square root</td>
</tr>
<tr>
<td><code>Math.sin(value)</code></td>
<td>sine/cosine/tangent of an angle in radians</td>
</tr>
<tr>
<td><code>Math.cos(value)</code></td>
<td></td>
</tr>
<tr>
<td><code>Math.tan(value)</code></td>
<td></td>
</tr>
<tr>
<td><code>Math.toDegrees(value)</code></td>
<td>convert degrees to radians and back</td>
</tr>
<tr>
<td><code>Math.toRadians(value)</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math.E</td>
<td>2.7182818...</td>
</tr>
<tr>
<td>Math.PI</td>
<td>3.1415926...</td>
</tr>
</tbody>
</table>
Math questions

- Evaluate the following expressions:

  ```java
  Math.abs(-1.23)
  Math.pow(3, 2)
  Math.pow(10, -2)
  Math.sqrt(121.0) - Math.sqrt(256.0)
  Math.ceil(6.022) + Math.floor(15.9994)
  Math.abs(Math.min(-3, -5))
  ```

 - `Math.max` and `Math.min` can be used to bound numbers.

Consider an `int` variable named `age`.

What statement would replace negative ages with 0?

What statement would cap the maximum age to 40?
Quirks of real numbers

- Some Math methods return double or other non-int types.

```java
int x = Math.pow(10, 3);  // ERROR: incompat. types
```

- Some double values print poorly (too many digits).

```java
double result = 1.0 / 3.0;
System.out.println(result);    // 0.33333333333333333
```

- The computer represents doubles in an imprecise way.

  ```java
  System.out.println(0.1 + 0.2);
  ```

 - Instead of 0.3, the output is 0.30000000000000004
Type casting

- **type cast**: A conversion from one type to another.
 - To promote an `int` into a `double` for floating point division
 - To truncate a `double` from a real number to an integer

- **Syntax:**

 `(type) expression`

Examples:

double result = (double) 19 / 5; // 3.8
int result2 = (int) result; // 3
int x = (int) Math.pow(10, 3); // 1000
More about type casting

- Type casting has high precedence and only casts the item immediately next to it.

```cpp
double x = (double) 1 + 1 / 2;    // 1.0
double y = 1 + (double) 1 / 2;    // 1.5
```

- You can use parentheses to force evaluation order.

```cpp
double average = (double) (a + b + c) / 3;
```

- A conversion to `double` can be achieved in other ways.

```cpp
double average = 1.0 * (a + b + c) / 3;
```
Returning a value from a method

Example:

```java
// Returns the slope of the line between the given points.
public static double slope(int x1, int y1, int x2, int y2) {
    double dy = y2 - y1;
    double dx = x2 - x1;
    return dy / dx;
}

slope(5, 11, 1, 3) returns 2.0
```

Can also shorten this to:

```java
// Returns the slope of the line between the given points.
public static double slope(int x1, int y1, int x2, int y2) {
    return (y2 - y1) / (x2 - x1);
}
```
Have we (in CS312, before today) used a method that returns a value in class before?

A. NO
B. YES
C. Class?? What class?
D. YES, millions of time
Common error: Not storing

- a \texttt{return} statement DOES NOT send a variable's name back to the calling method.

```java
public static void main(String[] args) {
    slope(0, 0, 6, 3);
    System.out.println("The slope is "+ result);
    // ERROR: result not defined
}

public static double slope(int x1, int x2, int y1, int y2) {
    double \texttt{dy} = y2 - y1;
    double \texttt{dx} = x2 - x1;
    double result = \texttt{dy} / \texttt{dx};
    return result;
}
```
Fixing the common error

- Instead, returning sends the variable's value back.
 - The returned value must be stored into a variable or used in an expression to be useful to the caller.

```java
public static void main(String[] args) {
    double s = slope(0, 0, 6, 3);
    System.out.println("The slope is " + s);
}

public static double slope(int x1, int x2, int y1, int y2) {
    double dy = y2 - y1;
    double dx = x2 - x1;
    double result = dy / dx;
    return result;
}
```
What is the output of the following code?

```java
int x = 5;
int y = 7;
System.out.print( m(x, y) + " " + x + " " + m(y, x));

public static int m(int x, int y) {
    x += 2;
    System.out.print(x + " ");
    y -= 2;
    return x * y;
}
```

A. 7 9 35 5 27
B. 7 7 35 7 27
C. 7 5 9 27 35
D. 35 7 5 9 27
E. None of A - D are correct
Exercise

- In physics, the *displacement* of a moving body represents its change in position over time while accelerating.
 - Given initial velocity v_0 in m/s, acceleration a in m/s2, and elapsed time t in s, the displacement of the body is:
 - Displacement = $v_0 \ t + \frac{1}{2} \ a \ t^2$

- Write a method `displacement` that accepts v_0, a, and t and computes and returns the change in position.
 - example: `displacement(3.0, 4.0, 5.0)` returns 65.0
public static double displacement(double v0, double a, double t) {
 double d = v0 * t + 0.5 * a * Math.pow(t, 2);
 return d;
}
Exercises

- write a method to
 - return the int average of 3 ints
 - return the double average of 3 ints
 - return the average of a given number of rolls of 2 six sided dice
 - calculate and return N factorial (N!).
 - return the number of seconds in a given number of years.
 - return the Nth digit of a given integer.
 - return the distance between two points.
Exercise

- If you drop two balls, which will hit the ground first?
 - Ball 1: height of 600m, initial velocity = 25 m/sec downward
 - Ball 2: height of 500m, initial velocity = 15 m/sec downward

- Write a program that determines how long each ball takes to hit the ground (and draws each ball falling).

- Total time is based on the force of gravity on each ball.
 - Acceleration due to gravity \(\approx 9.81 \text{ m/s}^2 \), downward
 - Displacement = \(v_0 t + \frac{1}{2} a t^2 \)
Ball solution

// Simulates the dropping of two balls from various heights.
import java.awt.*;

public class Balls {
 public static void main(String[] args) {
 DrawingPanel panel = new DrawingPanel(600, 600);
 Graphics g = panel.getGraphics();

 int ball1x = 100, ball1y = 0, v01 = 25;
 int ball2x = 200, ball2y = 100, v02 = 15;

 // draw the balls at each time increment
 for (double t = 0; t <= 10.0; t = t + 0.1) {
 g.setColor(Color.GRAY);
 panel.fillRect(0, 0, 600, 600);
 g.setColor(Color.RED);
 double disp1 = displacement(v01, t, 9.81);
 g.fillOval(ball1x, ball1y + (int) disp1, 10, 10);
 double disp2 = displacement(v02, t, 9.81);
 g.fillOval(ball2x, ball2y + (int) disp2, 10, 10);

 panel.sleep(50); // pause for 50 ms
 }
 }
}

...