
Utilizing Volatile External Information During Planning
Tsz-Chiu Au and Dana Nau and V.S. Subrahmanian1

Abstract. There are many practical planning situations in which
planners may need information from external sources during the
planning process. We describe the following:

T.C. Au, D. Nau, and V.S. Subrahmanian. Utilizing volatile external information during planning.
Proceedings of the European Conference on Artificial Intelligence (ECAI), August 2004, pp. 647–651.

• Wrappers that may be placed around conventional (isolated) plan-
ners. The wrapper replaces some of the planner’s memory ac-
cesses with queries to external information sources. When appro-
priate, the wrapper will automatically backtrack the planner to a
previous point in its operation.

• Query-management strategies for wrappers. These dictate when
to issue queries, and when/how to backtrack the planner.

• Mathematical analysis and experimental tests. Our results show
conditions under which different query management strategies
are preferable, and demonstrate that certain kinds of planning
paradigms are more suited than others for planning with volatile
information.

1 INTRODUCTION

A fundamental assumption of most AI-planning research is that the
planner isisolated: it is given a problem specification when it is in-
voked, and receives no further input while it is running. In many
practical planning situations, this assumption is unrealistic. Planners
may need query information sources such as database systems [3],
CAD systems [24], human users [20], and web services [27].

One problem with such queries islag time. Dix et al.[4] found that
when the planner queried other agents for information rather than
having it available internally, the planning time increased by more
than an order of magnitude.

Another problem with the queries isinformation volatility during
planning. In practical planning situations, the planning activity may
occur over a period of hours, days, or weeks [18, 11]: a period much
longer than the actual execution time of the plan. This means that
some of the relevant information is likely to change during the plan-
ning process: if we lock a database or reserve a ticket, the lock or
reservation may lapse; if we obtain a sensor reading, we may be un-
able to guarantee its accuracy for more than a short period of time. If
the information changes, the plan may need to be revised.

The focus of the paper is how to manage planning systems,
queries, and responses in order to plan with volatile information. Our
contributions are as follows:

• We describewrappersthat may be placed around isolated plan-
ners, to enable them to issue queries for volatile external infor-
mation and make appropriate use of the answers. The wrapper
replaces some of the planner’s memory accesses with queries that
the wrapper will direct to either an internal cache or an external

1 Department of Computer Science, University of Maryland, College Park,
Maryland, U.S.A. emails:{chiu,nau,vs}@cs.umd.edu

information source. When appropriate, the wrapper will automat-
ically backtrack the planner to a previous point in its operation.

• We describe several different query-management strategies for
wrappers to use. These strategies dictate when to issue queries,
and when and how to backtrack the planner.

• We describe experimental tests of several query management
strategies on wrapped versions of three well-known planners,
SNLP [17], Graphplan [2], and SHOP2 [21]. Our experimental
results show conditions under which different kinds of query man-
agement strategies are preferable, and conditions under which cer-
tain planners are preferable.

2 OUR MODEL

In this section we describe how to map a conventional planning pro-
cedureA into awrapped procedurêA, which is also called awrap-
per, that gets information from external sources during planning. We
do not care what kind of planning procedureA is, except thatA is
invoked on a problem descriptionP written in some languageL, A
gets no additional information after it has been invoked, and ifA ter-
minates it either returns failure or returns a plan or policyπ that is a
solution forP .2

The languageL will usually have many different types of syntac-
tic expressions. We now define a languageL̂ that includes all of the
expressions ofL, and also includes additional symbols calledun-
knowns. Each unknownu has one ofL’s expression types assigned
to it, and is only allowed to denote expressions of the same type.
Expressions in̂L are like the ones inL, except that in̂L they may
contain (or be) unknowns of the appropriate types. An expressione
is u-ungroundif it is an unknown or contains one or more unknowns;
otherwise it isu-ground. An expressione′ is a u-instanceof e if e′

can be obtained frome by substituting expressions for unknowns.
If a planning problemP is u-ground, then itssolutionsin L̂ are the

same as its solutions inL. If P is u-unground, thenπ is a solution
for P iff π is a solution for every u-ground instance ofP .

We now describe thewrapperÂ. For each unknownu in P , there
will be an information sourceσ(u) which Â may query for the value
for u. Â will have a cache for holding answers to queries; we assume
that the size of the cache is unlimited. Each timeA needs to know the
value of some unknownu in P , Â may either retrieve a value from
the cache or send a query toσ(u).

While Â is running onP , it will issue some sequence of queries
q1, q2, . . ., which may either be synchronous (i.e.,Â pauses until an
answer is received) or asynchronous (Â continues to operate, and
may issue additional queries). For each queryq, we letu(q) be the

2 In the worst case, we can wrap any planning algorithm by making a copy
of the planning algorithm’s execution state whenever it makes a query. De-
pending on the planner, it may be sufficient to store much less information.

unknown whose value is requested, andtl(q) be thelag time (the
elapsed time between issuingq and getting a response).

Associated withq is anexpiration time, the amount of time that
the response toq is guaranteed to remain valid. After the expiration
time has passed, the value of the unknownu(q) may change.

3 QUERY MANAGEMENT STRATEGIES

In the previous section we described one of the query management
strategies that the wrapped procedureÂ might use. We will call that
query strategy theeager update strategy, since the wrapper re-issues
a query immediately after its value expires.

The eager update strategy is not always best. When a queryq has
expired, the value of the unknownu(q) will not necessarily change—
and if it does change, it might later return to the previous value. Thus
instead of reissuing the query immediately (which will incur a lag
time and will increase the load on the network), it may be better to
use alazy update strategy: continue planningas if the value ofu(q)
were unchanged—and once we find what seems to be a solution,
reissue the query to make sure whether the solution is correct.

It is not hard to show that both strategies are sound, and we have
derived conditions under which they are complete. We have also de-
veloped aperiodic update strategy that is intermediate between the
eager and lazy strategies. We omit these results due to lack of space.

The implementation of the wrapped procedure needs to maintain
a data structure called aquery tree. SupposeP is u-unground, and
letP be the set of all u-ground instances ofP . Suppose we run̂A on
P , using the followingquery-management strategy: (1) if A needs
a value for an unknownu that is not in the cache, issue a query for
u and wait for a response; (2) if a queryq expires, immediatelyre-
issueit (i.e., issue a queryq′ with u(q′) = u(q)), and wait for a
response; and (3) ifv(q′) 6= v(q) then backtrackA to the point
whereq was issued, and proceed usingv(q′) as the value foru(q).
We now consider two cases:

Case 1: no query ever expires. Then̂A will never backtrack over
A’s execution, sôA’s execution trace onP is basically the same as
A’s execution trace on some instance ofP . There is one possible
execution trace for each combination of responses to the queries.
These execution traces form a treeY in which each internal node
corresponds a query, each edge corresponds to a portion of an
execution trace, and each terminal node corresponds to the termi-
nation of an execution trace. We will call this treêA’s query tree
for P . We letτ1, τ2, . . . , τn be the terminal nodes, and parent(ν)
be the parent of each nodeν.

Case 2: some queryq expires. Then̂A will backtrackA to the point
in Y whereq was issued, and reissueq. If the answer to the query
differs from before, thenA will proceed down a different branch
from before.

As an example, consider a simple transportation-planning problem
in which Jim wants to travel from one city to another, he may go by
either train or airplane, and he does not know the price of the train
ticket, the price of the airline ticket, and the amount of money in his
bank account.

We can model this as a u-unground planning problemP in which
there are three numerical unknowns:train price, airline price, and
bank balance. Due to lack of space, we will not give the details of
the initial state and the operators—but the basic idea is that in order
to decide whether Jim can afford to fly, we will need to retrieveair-
line price andbank balance, and in order to decide whether he can
go by train, we will need to retrievetrain price andbank balance.

at(jim,cityA) succeeds

have(jim,M) succeeds
with M = $150

$100 ≥ $120
fails

try to use board_airplane

query bank_balance

$150 ≥ $120 succeeds

have(jim,M) fails

start
try to use

board_train

at(jim,cityA) succeeds

have(jim,M) succeeds
with M = $120

$100 ≥ $80 succeeds

query airline_price

check preconditions
of move_airplane

. . .
bank_balance expires

check preconditions
of move_train

insert
board_airplane

into plan

insert board_train
into plan

query train_price

. . .

Figure 1. Query tree for the example.

Let A be a planner that uses a depth-first forward search, andÂ be
the wrapped planner. First,A starts checking whether Jim can afford
to fly. First,A tries to access the value ofairline price, soÂ queries
a travel agent (queryq1 in Figure 1). After 10 minutes, the answer is
$120. Next,A tries to accessbank-balance, soÂ queries the bank
(queryq2 in the figure). After 5 minutes, the answer is$150. Jim
can afford to fly to city B, soA starts putting the appropriate steps
into the plan for his flight. However, after5 more minutes the bank
notifiesÂ that the bank balance has changed. This may invalidates
the current plan, sôA backtracksA to q2 and reissues it (queryq3
in the figure). The new value ofbank price is 100. So Jim can no
longer afford to fly, and thenA starts checking whether he can afford
to go by train. To do this, it needs to knowtrain price, soÂ queries
to the train station. After 15 minutes, the answer is$80. Thus Jim
can afford to go by train.

4 ANALYSIS OF RUNNING TIMES

We now analyze the query management strategies’ running times.
As Â progresses, it will explore the nodes and edges of the query

tree. We assume that̂A will represent the query tree in its cache as
follows. For each nodeν, Â will store the unknownu currently being
queried and the current execution state forA; and for each edge em-
anating fromν, Â will store the corresponding value ofu. By storing
this information,Â can backtrack toν quickly if u’s value expires.
Furthermore, if the re-issued query produces a combination of values
thatÂ has seen before,̂A will be able to resumeA’s execution at the
node corresponding to this set of values, without having to re-execute
all of A’s computations leading to that node.

We let d be the average number of query nodes on each path in
the query tree,tl be the average lag time for any query,tq be the
average time between any two consecutive queries, andte be the
average time between any two consecutive expirations of queries.
For i = 1, . . . , n, we letTi be the amount of CPU timeA spends on
the edge between parent(τi) andτi.

For our analysis, we will consider the case where the maximum
expiration time is small enough for at least one expiration to occur
on each path in the query tree. Each time an expiration occurs,Â
using eager update strategy will cacheA’s execution state, indexed
by the associated set of values for the unknowns, then backtrack to
the query node whose query expired and reissue the query. When
the new answer to the query arrives,Â will either jump back to the
place it just left, or will jump to some other path in the query tree,
depending on whether or not the new value foru(q) is the same as
the old one.Â using lazy update strategy, however, will not cache
A′’s execution state and backtrack immediately when an expiration
occurs; it will do so only when̂A reaches a terminal node, at which
it will re-issue all pending expirations at once. We letmeager and
mlazy be the total number of jumpŝA with eager update strategy and
Â using lazy update strategy makes before it terminates, respectively.

Lazy update strategy.In the lazy update strategy,̂A only checks for
expirations whenA reaches a terminal node. This happens whenA
either finds a solution or exits with failure. Letτ1, . . . , τk be all of
the terminal nodes that̂A visits. If Â’s queries ever again produce
the same set of answers that led to someτi, Â will go immediately
to the cached value forτi, at which point it can immediately exit.
Thus, for eachτi, the computational work done byA to get toτi will
only need to be done once, andk is equal tomlazy. Let Tavg be the
average value of{Ti : Â visitsτi}, andT lazy

GP be the sum of the CPU
times for all edges of the query tree that are aboveτ1, . . . , τk but not
adjacent toτ1, . . . , τk. For eachi, we letti andt′i be the times when
Â jumps to a path from the root of the query tree to theτi and away
from the path, respectively. For eachi, let ri be the maximum lag
time for all queries issued at timet′i (i.e.,ri = ti+1 − t′i). It follows
that the total running time of the lazy update strategy is

Tlazy = T lazy
GP + mlazyTavg +

mlazyX
i=1

ri.

Eager update strategy.In this strategy,̂A immediately backtracks
to the query node for the unknownui when the value ofui expires,
the execution trace forA atτi is usually left unfinished. Each timêA
visits the path to toτi, it spends an average ofte time extendingA’s
execution trace before it moves to another path.Â will exit as soon as
it reaches a terminal nodeτi. Let p = Tmin/te be the average num-
ber of visits for each path toward each terminal node. Letτ1, . . . , τj

be all of the terminal nodes that̂A visits. WhenÂ terminates, each
path from the root of the query tree to anyτi has already been visited
p times on average, and̂A has spentTmin amount of CPU time to
work on each path on average. There are a total ofmeager × p tran-
sitions from one path to another, and since there is only one query at
each transition, each transitions takes an averagetl amount of time,
wheretl is the average lag time of each query.T eager

GP be the sum of
the CPU times for all edges of the query tree that are aboveτ1, . . . , τj

but not adjacent toτ1, . . . , τj , wherej is equal tomeager × p. Thus,
the total running time of the eager update strategy is

Teager = T eager
GP + meagerTmin + meagerptl.

Comparison betweenTlazy and Teager. It is difficult to say
which of T lazy

GP andT eager
GP is larger: on one hand, it is likely that

mlazy < meager, but on the other hand, the eager strategy will spend
less CPU time on each path toward each terminal nodes. The total
CPU time can be much larger for the lazy strategy than the eager one
(mlazyTavg ≥ meagerTmin) whenTavg is much larger thanTmin,

but the total lag time can be much smaller for the lazy strategy than

the eager one(
Pmlazy

i=1 ri ≤ meagerptl) whenp is much larger than
1. Thus, either strategy can have a larger running time than the other.
If expirations are frequent (te is small), thenp is large, so the third
term of the equation forTeager will be much larger than forTlazy.
Furthermore, the lazy update strategy can issue several queries si-
multaneously, while the eager update strategy cannot. Thus in this
case, usuallyTlazy < Teager. However, ifTmin is very small and
expirations occur less frequently, then potentiallyTeager < Tlazy.

5 EXPERIMENTS

Since the analysis required several simplifying assumptions, an im-
portant question is whether these hypotheses are true even when the
assumptions are not satisfied. We now investigate this experimen-
tally. Our experimental hypotheses were that (1) the lazy update strat-
egy would usually issue fewer queries than the eager update strategy,
and (2) the lazy update strategy would usually produce a smaller total
running time (including both CPU time and lag time) than the eager
update strategy.

Experimental Setup: For our experimental tests, we used
wrapped versions of three planners: SNLP, Graphplan, and SHOP2.3

For SHOP2, our testbeds consisted of 60 randomly generated u-
unground problems from the satellite domain used in the AIPS-2002
planning competition, and 80 randomly generated u-unground logis-
tics problems. Graphplan cannot handle numeric values; so we only
tested it on the logistics problems. In addition, Graphplan is much
slower than SHOP2: it could solve only 18 of the 80 problems within
the time limit of our experiments.4 SNLP was too slow to solve even
a single one of the logistics problems. So for both SNLP and Graph-
plan we used 20 u-unground problems from a simplified version of
logistics domain that we called the travel domain. Each problem con-
tained at most four unknowns; most unknowns had two possible val-
ues.

In order to test the two hypotheses, we measured the total number
of queries and total running time for the wrapped planning proce-
dures. We kept the lag times fixed at0.1 seconds, and varied the
expiration times from 0.2 to 1.5 seconds. For each combination of
planner, problem, expiration time, and query management strategy
we did five runs. Thus each data point for the satellite domain is the
average of 300 runs, each data point for the logistics domain is the
average of 400 runs of SHOP2 or 90 runs of Graphplan, and each
data point for the travel domain is the average of 100 runs of SNLP
or 100 runs of Graphplan. Since this gave us a total of more than
30,000 runs to perform, we needed to limit the running time of each
procedure; we chose a limit of 5 minutes per run.

Figure 2 shows the total number of queries issued by the wrappers
as a function of the expiration time. Note that they axis is on a loga-
rithmic scale that spans three orders of magnitude. In most cases the
eager update strategy generates many times more queries than the
lazy update strategy, especially when the expiration time is small.
These results confirm Hypothesis 1.

Figure 3 shows the total running time for the wrapper as a function
of the expiration time. Again they axis is on a logarithmic scale.

3 For this purpose we used a simulation. For a plannerA, it is straightforward
to develop a simulation of the wrapped plannerÂ that gives very accurate
results. The basic idea is to run invocations ofA separately on each of the
paths in the query tree and keep track of the timing data. This data can then
be reused for several simulations, making it possible to simulate a large
number of runs of the planner in a short amount of time.

4 SHOP2 ran so much faster than the other planners because it can make use
of domain-specific information

0.2 0.4 0.6 0.8 1 1.2 1.4

101

102

103

104

105

106

Expiration time (seconds)

A
ve

ra
ge

 T
ot

al
 n

um
be

r o
f q

ue
rie

s
(s

ec
on

ds
)

Lazy, SHOP2, Satellite
Eager, SHOP2, Satellite
Lazy, SHOP2, Logistics
Eager, SHOP2, Logistics
Lazy, Graphplan, Logistics
Eager, Graphplan, Logistics
Lazy, Graphplan, Travel
Eager, Graphplan, Travel
Lazy, SNLP, Travel
Eager, SNLP, Travel

Figure 2. Total number of queries as a function of expiration time. Eager
and lazy update strategies are denoted by dotted and solid lines, respectively.

Each data point is the average of several hundred runs (see the text). To
avoid biasing the results, no data point is shown if one or more runs did not

finish within the time limit.

0.2 0.4 0.6 0.8 1 1.2 1.4

101

102

103

104

105

106

Expiration time (seconds)

A
ve

ra
ge

 T
ot

al
 ru

nn
in

g
tim

e
(s

ec
on

ds
)

Lazy, SHOP2, Satellite
Eager, SHOP2, Satellite
Lazy, SHOP2, Logistics
Eager, SHOP2, Logistics
Lazy, Graphplan, Logistics
Eager, Graphplan, Logistics
Lazy, Graphplan, Travel
Eager, Graphplan, Travel
Lazy, SNLP, Travel
Eager, SNLP, Travel

Figure 3. Total running time as a function of expiration time. Eager and
lazy update strategies are denoted by dotted and solid lines, respectively.
Each data point is the average of several hundred runs (see the text). To

avoid biasing the results, no data point is shown if one or more runs did not
finish within the time limit.

In every case, the lazy update strategy has a smaller running time
than the eager update strategy, regardless of the planner, domain, and
expiration time. This confirms Hypothesis 2.

In addition to confirming the two hypotheses, Figures 2 and 3 sug-
gest that of the three planners, SHOP2 is the one that is best suited
for solving planning problems in which there is volatile external in-
formation. In the logistics domain, it consistently generated fewer
queries than Graphplan (and the data points for SHOP2 include sig-
nificantly more complicated problems than Graphplan, since Graph-
plan was only able to solve 20% of the logistics problems). SHOP2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Normalized time

P
er

ce
nt

ag
e

of
 th

e
nu

m
be

r o
f q

ue
rie

s
is

su
ed

SHOP2, Satellite
SHOP2, Logistics
Graphplan, Logistics
Graphplan, Travel
SNLP, Travel

Figure 4. Fraction of the total number of queries issued at any point during
the planning process if there is no expiration. All timelines are normalized to

1. Each line is the average over all possible execution traces.

would also have generated fewer queries than SNLP if we had run it
on the problems in the travel domain.

To provide additional verification of which planner would be most
suitable for solving in which there is volatile external information,
we did one more experiment. In this one, we generated the entire
query tree for each planner. Each path in the query tree represents
what the planner’s execution trace would be if no expirations ever
occurred. For each of these paths, and for each query along that path,
we computed the total number of queries that a planner has issued as
a function of what percentage of the total planning time has elapsed.
We averaged this data over all of the paths in the query tree: this
consisted of 320 paths for SNLP and 384 paths for Graphplan in the
travel domain, 288 paths for Graphplan and 2876 paths for SHOP2
in the logistics domain, and 2236 paths for SHOP2 in the satellite
domain.

The figure shows that both Graphplan and SNLP issue almost all
of their queries at the beginning of their planning process, while
SHOP2’s queries are somewhat more spread out. This provides addi-
tional confirmation that SHOP2 is better suited than SNLP or Graph-
plan for solving problems when there is volatile external information.
If a planner issues all of its queries at once, this will temporarily in-
crease the load on the communication network and the information
sources, which is likely to increase the lag time for those queries. A
planner that spreads out its queries will avoid this difficulty.

6 RELATED WORK

Our problem stems from the works on integrating planning system
with multi-agent environments, in which a planning agent can inter-
act with external agents, and make queries to distributed, heteroge-
neous information sources. There are different types of multi-agent
planning problem, but our problem is most similar to the problem in
which a single planner creates plans for several agents [4, 22, 26].
This type of problem arises in application areas such as multi-robot
environments, distributed database management system, servers dis-
tributed over the Internet, logistics, manufacturing, evacuation oper-
ations and games.

Although we cannot find any work directly related to our prob-
lem, many works relate to different aspects of our problem. First,
our problem is similar to contingent planning problem with partial
observability, such as planning with information gathering and with
sensing action [5, 14] and conditional planning [23]. The key dif-
ference is that the sensing actions of our planning agent—the issues
of queries—-are executed during plan generation rather than during
plan execution. Thus we gather information to learn what the planner
does not know during planning. Second, the management of the ex-
piration of answers in real time shares some aspects of the works in
real time searching [16] and real-time path planning[15, 25]. Reac-
tive planning [1, 6, 7, 19] handles real time information during plan
execution rather than during the plan generation. Third, the adap-
tion of new information makes use of the techniques in plan adap-
tion [9, 10, 13], especially plan reuse [12], which is exactly how our
wrappers resume previously saved runtime stacks ofA. Fourth, the
continuation of planning based on assumption making in lazy update
strategy is like PUCCINI [8], a partial-order planner that allows the
option of assuming that certain preconditions hold, performing the
action, and verifying the preconditions afterward.

Sage [14] is an augmented version of UCPOP that constructs plans
for how to gather information during plan execution. One distinction
between their work and ours is that Sage does not do information-
gathering during plan construction. However, Sage can do replan-
ning, which in some cases could amount to the same thing. Another
distinction is that Sage is a single planning algorithm, whereas we
provide a wrapper that can be used with a large number of different
planning algorithms, and we provide results about the performance
of wrapped planners under different conditions.

7 CONCLUSIONS

In this paper, we have examined how to do planning in situations
where the planner needs to get information from external sources
and this information may change during the planning process.

We have described a general formulation forwrappersthat may be
placed around conventional planners (ones that do not query external
information sources), in order to allow them to make such queries.
The wrapper replaces some of the planner’s memory accesses with
queries to external information sources. When appropriate, the wrap-
per will automatically backtrack the planner to a previous point in its
operation.

We have described two query-management strategies for wrap-
pers: aneagerupdate strategy that re-issues queries whenever the
needed information expires, and alazyupdate strategy that postpones
re-issuing queries until later.

Our mathematical analyses of the query-management strategies
suggest that the lazy update strategy usually issues fewer queries
than the eager update strategy. The lazy update strategy will often
require more CPU time than the eager update strategy—but the lazy
strategy’s total running time (its CPU time plus the lag times for its
queries) is likely to be smaller than the total running time of the eager
update strategy.

Our experimental tests of three different planning systems
(SHOP2, Graphplan, and SNLP) confirm the analytical results. Our
experiments also suggest that SHOP2 will be more suitable than
Graphplan and SNLP for planning with volatile external information,
for two reasons. First, SHOP2 issues fewer queries. Second, these
queries are somewhat more spread out over time, which is prefer-
able because it places a smaller transient load on the communication
network and information sources.

ACKNOWLEDGEMENTS

This work was supported in part by Army Research Lab con-
tracts DAAL0197K0135 and DAAD190320026, the CTAs on Ad-
vanced Decision Architectures and Telecommunications, ARO con-
tract DAAD190010484, DARPA/RL contracts F306020020505 and
F306029910552, and NSF grants 0205489 and IIS0329851.

REFERENCES
[1] M. Beetz and D. McDermott, ‘Declarative Goals in Reactive Plans’, in

AIPS, (1992).
[2] A. L. Blum and M. L. Furst, ‘Fast planning through planning graph

analysis’,IJCAI, 1636–1642, (1995).
[3] S. Chien, R. Hill, X. Wang, and T. Estlin, ‘Why real-world planning is

difficult: A tale of two applications’, inEWSP, (1995).
[4] Jürgen Dix, H́ector Mũnoz-Avila, Dana S. Nau, and LingLing Zhang,

‘IMPACTing SHOP: Putting an AI planner into a multi-agent environ-
ment’,Annals of Mathematics and AI, 37(4), 381–407, (2003).

[5] D. Draper, S. Hanks, and D. Weld, ‘Probabilistic planning with infor-
mation gathering and contingent execution’, inAIPS-94, pp. 31–36,
(1994).

[6] M. Drummond, ‘Situated control rules’, inKR, pp. 103–113, (1989).
[7] J. R. Firby, ‘An investigation into reactive planning in complex do-

mains’,Artif. Intel., 3, 251–288, (1987).
[8] Keith Golden, ‘Leap Before You Look: Information Gathering in the

PUCCINI planner’, inAIPS, pp. 70–77, (1998).
[9] K. J. Hammond,Case-Based Planning: viewing learning as a memory

task, Academic Press, New York, 1989.
[10] S. Hanks and D. S. Weld, ‘A Domain-Independent Algorithm for Plan

Adaptation’,JAIR, 2, 319–360, (1995).
[11] i2 Technologies. Reducing planning cycle time at

Altera Corporation. http://www.i2.com/assets/pdf/
96FDF2C7-71C7-43B5-906A01BAE2F0AE76.pdf, 2002.

[12] L. Ihrig and S. Kambhampati, ‘Plan-space vs. State-space planning in
reuse and replay’, Technical report, Arizona State University, (1996).

[13] S. Kambhampati and J. A. Hendler, ‘A validation structure based theory
of plan modification and reuse’,Artif. Intel., 55, 193–258, (1992).

[14] Craig A. Knoblock, ‘Planning, executing, sensing, and replanning for
information gathering’, inIJCAI, ed., Chris Mellish, pp. 1686–1693,
San Francisco, (1995). Morgan Kaufmann.

[15] S. Koenig and R. Simmons, ‘Solving robot navigation problems with
initial pose uncertainty using real-time heuristic search’, inAIPS,
(1998).

[16] R. Korf, ‘Real-time heuristic search’,Artif. Intel., 42, 189–211, (1990).
[17] D. McAllester and D. Rosenblitt, ‘Systematic nonlinear planning’, in

AAAI, pp. 634–639, (July 1991).
[18] William H. McRaven,Spec Ops : Case Studies in Special Operations

Warfare: Theory and Practice, Presidio Press, 1996.
[19] M.Schoppers, ‘Universal plans for reactive robots in unpredictable en-

vironments’, inIJCAI, pp. 1039–1046, (1987).
[20] Héctor Mũnoz-Avila, D. Aha, L. Breslow, and Dana S. Nau, ‘HICAP:

an interactive case-based planning architecture and its application to
noncombatant evacuation operations’, inIAAI, pp. 870–875, (1999).

[21] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, William Mur-
dock, Dan Wu, and Fusun Yaman, ‘SHOP2: An HTN planning system’,
JAIR, 20, 379–404, (December 2003).

[22] F. Pecora and A. Cesta, ‘Planning and scheduling ingredients for a
multi-agent system’, inICMAS, (2002).

[23] M. Peot and D. Smith, ‘Conditional nonlinear planning’, inAIPS, pp.
189–197, (1992).

[24] S. J. J. Smith, K. Hebbar, Dana S. Nau, and I. Minis, ‘Integrating elec-
trical and mechanical design and process planning’, inKnowledge In-
tensive CAD, Volume 2, eds., Martti Mantyla, Susan Finger, and Tetsuo
Tomiyama, 269–288, Chapman and Hall, (1997).

[25] Anthony Stentz, ‘Optimal and efficient path planning for partially-
known environment’, inICRA-94, pp. 3310–3317, (1994).

[26] V.S. Subrahmanian, Piero Bonatti, Júrgen Dix, Thomas Eiter, Sarit
Kraus, FatmáOzcan, and Robert Ross,Heterogeneous Agent Systems,
The MIT Press, 2000.

[27] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, and Dana Nau,
‘Automating daml-s web services composition using SHOP2’, in
ISWC2003, (2003).

