
Dynamic Programming with Stochastic Opponent Models in Social Games

Tsz-Chiu Au
Department of Computer Science

University of Maryland
College Park, MD 20742, U.S.A.

chiu@cs.umd.edu

Abstract

Policy makers often confront with the following problem:
how best their organization can repeatedly interact with other
organizations such that the long-term utility of their organi-
zation can be maximized? This problem is difficult because
policy makers usually know very little about other organi-
zations, and therefore they cannot make perfect predictions
about the other organizations’ behaviors. In this paper, we
formulate this problem as social games in which (1) there are
two or more agents interacting with each other; (2) each agent
can perform more than one action in each interaction; and (3)
the payoff matrix is not fixed; the payoff matrix varies from
one situation to another. We devised a dynamic program-
ming algorithm to compute a policy given the model of the
other agent’s behavior, written in a language called SOMA-
programs, a rich language for representing agent’s incomplete
belief about the other agents’ behavior.

Introduction
Policy makers often deal with problems that can be formu-
lated as social games, in which agents (such as government
agencies, companies, and ethnic groups) interact with other
agents for a long period of time, and the success of the agents
depends on how well the agents interact with each other.
One of the difficulty in these games is that an agent usu-
ally know very little about the decision making process of
the other agents. But an agent can often build an incomplete
model of other agents by observing the other agents’ past be-
havior. The challenge, therefore, is how to make decisions
based on incomplete models of the other agents’ behavior.

This paper proposes a solution to this problem based
on an opponent modeling language called SOMA-
programs (Simari et al. 2006). In this language, the other
agent’s behavior is represented by a set of probabilistic rules
called SOMA-rules, each of them describes what actions an
agent will probably do when certain conditions are satisfied.
The key feature of SOMA-rules is that it uses probability
intervals to handle missing information about the probabil-
ity in the rules—even if the modeler does not have the ex-
act probability of the actions that an agent will do when
some conditions are satisfied, he can still simply give the
upper bound and the lower bound of the probabilities in the

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

SOMA-programs. Unlike other framework such as Markov
Decision Process (MDP), SOMA-programs does not require
one to give all the transition rules in a transition matrix;
SOMA-programs can handle the missing rules nicely using
probability intervals. Therefore SOMA-programs is suitable
for modeling agents with limited information about their ac-
tual behavior.

We focus on the problem that can be modeled as a social
game in which the long-term payoff depends on the inter-
action among the agents. We allow each agent to choose
more than one action in each interaction. In each interac-
tion, an agent receives a numeric payoff (such as money),
which is determined by the set of actions chose by all agents.
The goal is to maximize the lower bound of the expected
accumulative payoff of an agent. Our approach is to use
dynamic programming to compute a policy that maximize
the lower bound of the expected accumulative payoff of an
agent, given that there is a SOMA-program for every other
agent.

Example
A manufacturer needs to purchase certain amount of raw
materials every day. It can choose to purchase from n dif-
ferent suppliers. In order to maintain the daily business of
the manufacturer, at least m suppliers must provide the raw
materials. But if more than m suppliers provide the raw ma-
terials, the extra stock will be wasted.

The suppliers, however, may not be able to provide the
requested materials to the manufacturer, due to the limited
productivity of their factories that produce the raw materi-
als. Furthermore, it can be beneficial to the suppliers not
supplying the requested materials to the manufacturer but to
other manufacturer.

Suppose there are three suppliers: Supplier A, Supplier B,
and Supplier C. The manufacturer can choose to order raw
materials from a subset of them. Simultaneously, the suppli-
ers can choose to produce the raw material for the supplier,
even though the suppliers do not know whether the manu-
facturer would order the raw materials from them. The man-
ufacturer has to make sure that at least one supplier must
provide the raw material.

We denote the manufacturer as ψ1, and the Supplier A, the
Supplier B, and the Supplier C as ψ2, ψ3, and ψ4, respec-
tively. We denote the action that the manufacturer orders

raw materials from a supplier ψk by order(ψk). Likewise,
we denote the action that the supplier ψk produces raw ma-
terials for the manufacturer by produce(ψk).

The daily reward for the manufacturer depends on sev-
eral factors: (1) the actions it chooses, (2) the actions the
suppliers choose, and (3) how many days the manufacturer
does not receive sufficient raw materials in the last 7 days.
The last factor can be modeled by having a set of states
{S1, S2, . . . , S7}, such that Si means in the past 7 days the
number of days on which the manufacturer failed to receive
sufficient raw materials is i. Let C be the set of actions cho-
sen by the manufacturer and the suppliers. We define a re-
ward function R1 as follows.

R1(Si, C) = 10×i+3×|{ψk : order(ψk), produce(ψk) ∈ C}|

We consider the accumulated reward of a period of 30
days. Suppose the actions of the agents (i.e., the man-
ufacturer and the suppliers) on the i’th day is Ci. The
accumulated reward of a period of 30 days would be∑

1≤i≤30R1(Si, Ci), where Si is the state of the world after
the the actions before the i’th day are executed. The objec-
tive of the manufacturer is to choose a set of order actions
on every day so as to maximize its accumulated reward.

The problem, however, is that the manufacturer does not
know the exact behavior of the suppliers. Perhaps the be-
havior is inherently uncertain, since the suppliers’ decisions
depend on unpredictable factors such as traffics and weath-
ers.

We propose to use a set of rules called SOMA-programs
to describe the behavior of the suppliers. The feasibility of
SOMA-programs allows us to encode knowledge about the
suppliers’ behavior that we learnt from the historical records
of the interaction between the manufacturer and the suppli-
ers. The objective of the manufacturer is the maximization
of the lower bound of the expected accumulated reward over
a period of 30 days, given the limited information (in form
of SOMA-rules) of the behavior the suppliers.

Definition
We assume that states of an agent in a particular time are
logically describable using logical formulas whose syntax
consists of a finite set of predicate symbols (each with an as-
sociated arity), a finite set of constant symbols, and an infi-
nite set of variable symbols. We assume there is no function
symbol; thus a term can only be either a constant symbol
or a variable symbol. An atom is p(t1, t2, . . . tn), where p
is an n-ary predicate symbol and t1, t2, . . . , tn are terms. If
t1, t2, . . . tn are constants, then the atom p(t1, t2, . . . tn) is
a ground atom. Let S be the set of all ground atoms de-
scribable in this language. The state of an agent at any given
point in time is a set of ground atoms (i.e., a subset of S).

An agent can choose one or more actions and performs
them at any point in time. Actions can be expressed by logi-
cal formulas that involve a finite set of action symbols (each
with an associated arity), a finite set of constant symbols,
and an infinite set of variable symbols. The set of constant
symbols and variable symbols are the same as those in the
logical formulas for states. But the set of action symbols is

disjoint from the set of predicate symbols that are used to
describe agent’s states. An action atom is a(t1, t2, . . . , tn),
where a is an action symbols and t1, t2, . . . , tn are terms
as defined above. A ground action atom is an action atom
whose terms are constants. Let A be the set of all ground
action atoms in this language. A course of action (COA) is
a finite subset of ground action atoms in A.

Let L be a finite set of literals. Then we denote the set of
positive literals in L by L+, and the set of negative literals
by L−.

Probabilistic Operators
There are several formalizations of probabilistic actions.
The most well-known formalizations are (1) probabilistic
STRIPS operators (Kushmerick, Hanks, & Weld 1995),
(2) factored probabilistic STRIPS operators (Dearden &
Boutilier 1997), and (3) Probabilistic PDDL 1.0 for the 2004
International Planning Competition (Younes et al. 2005).
These formalizations are very expressive; they can be used
to describe complicated actions succinctly. Our definition of
actions resembles probabilistic STRIPS operators in (Kush-
merick, Hanks, & Weld 1995). In this paper, we mathemati-
cally define operators as follows.

Definition 1 An operator is a tuple (op,pre,eff,∆), where

• op is an action atom;
• pre is a finite set of literals;
• eff is a collection of sets of literals; and
• ∆ is a probability distribution over eff.
We say op is the name of the operator, pre is the precondi-
tion of the operator, e ∈ eff is an effect of the operator, and
∆(e) is the probability of the effect e ∈ eff. All variables in
pre and eff must appear in op.

Suppose θ is a substitution of variables in an operator α. We
use αθ to denote the ground operator after the substitution.
An action is a ground operator. We denote the precondition
and the effect of an action a by pre(a) and eff(a), respec-
tively. Each element in eff(a) is a possible effect of a.

A state is a set of atoms. A ground action a =
(op,pre,eff,∆) is applicable in a state S if and only if
pre ⊆ S. After the execution of a at S, the next state would
be apply(S, e) = (S \ e−) ∪ e+ for some e ∈ eff with the
probability ∆(e).

When actions a1, a2, . . . , an are exe-
cuted at state S at the same time, then the
next state is apply(S, {e1, e2, . . . , en}) =
apply(apply(apply(S, e1), e2), . . . , en), where ei is a
possible effect of ai.

SOMA-Programs: A Stochastic Language for
Modeling Agents
We assume the behavior of an agent can be modeled as
a SOMA-program, which consists of a set of rules called
SOMA-rules. This section summarizes the definition of
SOMA-rules and SOMA-programs in (Simari et al. 2006).

An action formula is either an action atom or a formula in
one of the following form:(P ∧Q), (P ∨Q), or ¬P , where

P and Q are action formulas. A SOMA-rule is a formula of
the form:

P : [l, u]← B1 ∧ . . . ∧Bn,
where B1, . . . , Bn are atoms, 0 ≤ l ≤ u ≤ 1 are probability
values, and P is an action formula. If P is an action atom,
the above rule is an elementary SOMA-rule. A SOMA-rule
is ground if and only if P ,B1, B2, . . . , Bn are ground. We
denote the set of ground instances of a rule r by ground(r).

A SOMA-program is a finite set of SOMA-rules. An
elementary SOMA-program is a finite set of elementary
SOMA-rules.

A SOMA-program syntactically defines our knowledge
about the behavior of an agent. The actual behavior of an
agent, however, remains unknown. But the SOMA-program
can be used to confine the set of possible behaviors that the
agent might have. According to this viewpoint, we define
the semantics of a SOMA-program as follows.

A course of action (COA) is a finite set of ground action
atoms that an agent might take in a given situation. Let
gr(A) be the set of all possible ground actions. Then the
power set C = 2gr(A) of gr(A) be the set of all possible
COAs. For any course of action C ∈ C, we denote the prob-
ability that the agent performs exactly the actions in C by
I(C). More precisely, a SOMA-interpretation I is a prob-
ability distribution over C—a mapping from C to [0, 1] such
that

∑
C∈C I(C) = 1.

A course of action C satisfies a ground action atom P if
and only if P ∈ C. A course of action C satisfies a ground
action formula P if and only if either (1) C satisfies P when
P is an action atom; (2) C satisfies P1 and P2 when P has
the form P1 ∧ P2; (3) C satisfies P1 or P2 when P has the
form P1 ∨ P2; or (4) C does not satisfy P when P has the
form ¬P . If C satisfies a ground action formula P , we also
say C is feasible with respect to P , and write C 7→ P .

A course of action C is feasible w.r.t. a state S if and
only if all actions in C are applicable in S. We denote
this relationship by a boolean function φ(C, S), such that
φ(C, S) = True if and only if C is feasible at S. We as-
sume all applicable ground actions in C feasible at S can
be executed in parallel at the same time—there is no ground
atom B such that there are two actions ψ1, ψ2 ∈ C such that
ψ1 adds B to the state but ψ2 deletes B from the state. A
ground SOMA-rule r = (P : [l, u] ← B1 ∧ . . . ∧ Bn) is
applicable at a state S if and only if {B1, . . . , Bn} ⊆ S.

A SOMA-interpretation I satisfies a ground SOMA-rule
r w.r.t. a state S applicable to r if and only if either (1) r is
applicable at S and the sum of the probabilities of all feasible
(w.r.t. both P and S) COAs is between l and u inclusively;
or (2) r is not applicable at S. More precisely, I satisfies r
w.r.t. S if and only if (1) l ≤

∑
φ(C,S)=True∧(C 7→P) I(C) ≤

u, or (2) {B1, . . . , Bn} 6⊆ S. A SOMA-interpretation I
satisfies a SOMA-rule w.r.t. a state S if and only if it satisfies
all ground instances of the rule.

A SOMA-program Π is consistent w.r.t. a state S if there
is at least one SOMA-interpretation that satisfies all rules in
Π w.r.t. S. Given a SOMA-program Π and a state S, we
define a set of constraints over the probabilities of COAs as
follows. Let P (C) be the probability of a COAC ∈ C. Then

the set of constraints CONS(Π, S) are:

1. For all r ∈ Π and for all r′ ∈ ground(r) such that r′ is
applicable to S,l ≤ ∑

φ(C,S)=True∧C 7→P

P (C) ≤ u

 ∈ CONS(Π, S),

2. ∑
φ(C,S)=True

P (C) = 1

 ∈ CONS(Π, S).

Every solution to the set CONS(Π, S) of constraints is
a SOMA-interpretation I that makes Π consistent—I will
satisfies all the rules in Π. A theorem in (Simari et al. 2006)
states that Π is consistent w.r.t. a given state S if and only
if CONS(Π, S) has a solution. However, solving the con-
straint system CONS(Π, S) is NP-hard. But if the set of
SOMA-rules are ground, CONS(Π, S) would become lin-
ear constraints, and thus solving any linear objective func-
tion subject to CONS(Π, S) is a linear programming prob-
lem that can be efficiently solved by existing linear program-
ming algorithms such as the Simplex algorithm and the Kar-
markar’s Interior Point algorithm.

Problem Definition
Suppose there are n agents interacting with each other.
The set of agents is {ψ1, ψ2, . . . , ψm}. We consider dis-
crete time points and finite horizon only. Let Time =
{t0, t1, t2, . . . , tm} be the set of all time points at which
agents can interact with each other. At any time point in
Time, each agent can choose a finite number of actions and
performs them simultaneously. This set of actions consti-
tutes a course of action. Suppose the state of the world at
time tj is Sj . At time tj , the agents can only chose actions
whose precondition was satisfied at Sj . A COA profile at
time tj is a vector ρj = 〈Cj1 , C

j
2 , . . . , C

j
n〉, where Cjk is the

COA chosen by the agent ψk at tj . After all agents choose
their courses of actions, their actions will be executed at the
same time. The state Sj will then advance towards the next
state Sj+1, which is determined by the previous state Sj and
the COA profile at time tj . We assume that actions in a COA
profile can always be executed at the same time without any
conflict among the actions.

Agents will receive rewards after they perform their ac-
tions. The rewards depend on (1) the actions performed by
all participating agents, and (2) the state at which the ac-
tions are executed. We model the reward of an agent ψk by
a reward function Rk, such that Rk(S, ρ) is the reward (a
non-negative number) that the agent ψk should receive if the
actions performed at state S are the actions in the COA pro-
file ρ. We assume that the agents know this reward function.

The performance of an agent is measured by its accumu-
lated rewards in the entire course of interactions. Suppose
an agent earns rj at time tj . The accumulated reward of the
agent is

∑m
j=0 r

j , where m is the total number of iterations.
The objective of an agent is to maximize its accumulated
reward by choosing COAs at every time point.

Our problem is to compute the optimal sequence of COAs
for a particular agent, namely ψ1, given that ψ1 initially has
(1) the initial state of the world, (2) the set of all actions, and
(3) the models of other agents, written in SOMA-programs.
We denote the SOMA-program of the agent ψk by Πk, for
2 ≤ k ≤ n. Our key assumption is that the agents’ behav-
ior always follows the given SOMA-programs; they never
change their behavior during the entire course of the inter-
action.

Given a state Sj at time tj , there is a set Ikj of SOMA-
interpretations for each agent ψk, for 2 ≤ k ≤ n. Each
element Ik in Ikj is a probability distribution of COAs, such
that ψk would choose a COA from the set C of all COAs for
ψk according to the distribution Ik at time tj . An interpre-
tation profile is a vector 〈I2, I3, . . . , In〉, where Ik ∈ Ikj is
a SOMA-interpretation for ψk. Notice that there is no in-
terpretation I1 in an interpretation profile, because ψ1 is the
subject of our problem.

Now we define the expected accumulated rewards ψ1,
given that ψ1 chooses an COA Cj1 at time tj and the in-
terpretation profile is Ij = 〈Ij2 , I

j
3 , . . . , I

j
n〉, for 1 ≤ j ≤ m.

First, we define the probability of COA profiles as follows.
Let the set of all COA profiles be Ω = {〈C1, C2, . . . , Cn〉 :
C1, C2, . . . , Cn ∈ C}. For any ρj = 〈Cj1 , C

j
2 , . . . , C

j
n〉 ∈ Ω

chosen at time tj , we define the probability of ρj to be
P (ρj) =

∏n
k=2 I

j
k(Cjk). We can show that

∑
ρj∈Ω P (ρj) =

1.
Then we define the transition probability from one state

to another given a COA profile. Let next(Sj , ρj) be the
set of all possible next states when all actions in the COA
profile ρj = 〈Cj1 , C

j
2 , . . . , C

j
n〉 are executed at Sj . This

set is determined by the effects of the actions in ρj . Let
effjk = {〈e1, e2, . . . , e|eff(al)|〉 : ei ∈ eff(al), al ∈ Cjk}
be the set of all permutations of possible effects of ψk ac-
cording to Cjk. We define the probability of ~ek ∈ effjk by
P (~ek) =

∏
ei∈~ek

∆i(ei), where ∆i is the probability dis-
tribution over eff(al) as defined in the action al. We can
show that

∑
~ek∈effjk

P (~ek) = 1. An effect profile is a vector

〈~e1, ~e2, . . . , ~en〉, where ~ek ∈ effjk. The probability of an ef-
fect profile E = 〈~e1, ~e2, . . . , ~en〉 is P (E) =

∏
~ek∈E P (~ek).

Then we denote the next state by Sj+1
E = apply(Sj ,∪{~ek :

~ek ∈ E}) ∈ next(Sj , ρj) can be led from Sj by the effect
profile E. The probability of reaching Sj+1

E from Sj via E
of ρj is P (Sj+1

E) = P (E).
Given an interpretation profile Ij = 〈Ij2 , I

j
3 , . . . , I

j
n〉 and

the COAs C0
1 , C

1
1 , . . . , C

m−1
1 of agent ψ1, the expected ac-

cumulated reward of ψ1 starting from state Sj at time tj ,
for 0 ≤ j < m, can be defined by the following recursive
formula:

Expect(Sj) =
∑
ρj∈Ω

{
P (ρj)×

[
R1(Sj , ρj) + g(ρj)

]}
where

g(ρj) =
∑

Sj+1
E ∈next(Sj ,ρj)

P (Sj+1
E)× Expect(Sj+1

E)

In addition, the expected accumulated reward of all states
at the last interaction is zero. That is, Expect(Sm) = 0 for
all Sm ∈ S , where S is the set of all possible states. If the
initial state is S0

0 , then the expected accumulated reward of
the agent ψ1 is Expect(S0

0), and this can be computed by
the above recursive formula.

The expected accumulated reward depends on the inter-
pretation profiles at every time points. However, there can
be more than one interpretation profile satisfies with the
SOMA-programs. So there can be many different expected
accumulated awards. Therefore, we focus on the lower
bound of the expected accumulated reward. First, a COA
policy is a mapping from π : S × Time → C, such that
π(Sj , tj) is the action ψ1 would choose at state Sj at time
tj . So given a COA policy π, our question is, if ψ1 chooses
COAs according to π, what is the lowest possible expected
accumulated reward ψ1 could get? Our objective is to find a
COA policy such that the lower bound can be maximized.

In summary, our problem is:

Definition 2 Given (1) the number of agents n, (2) the num-
ber of time points m, (3) the initial state S0, (4) the set A of
all possible ground actions, (5) the reward function R1 for
the agent ψ1, and (6) the SOMA-programs Π2,Π3, . . . ,Πm

of the agentψ2, ψ3, . . . , ψm, find a COA policy π forψ1 such
that the lower bound of the expected accumulated rewards of
ψ1 can be maximized.

Several special features of this problem are: (1) there can
be more than two agents; (2) agents can choose more than
one action at a time; (3) the payoff matrix is not fixed; the
payoff matrix can change from one state to another; and (4)
SOMA-program permits a high degree of ignorance about
the other agent’s behavior; the agent modeler does not need
to give a precise probability distribution of the COAs. We
believe that these are important features in many applica-
tions.

An Algorithm for Computing the Maximum
Lower Bound of the Expected Accumulated

Rewards
In this section, we present an algorithm called MLBEAR for
computing the maximum lower bound of the expected accu-
mulated rewards. The algorithm is similar to the dynamic
programming algorithm such as the value iteration algorithm
for MDPs. First, it computes the values of all states at time
tm, and then the values at time tm−1, and so forth, until the
values at time t0 are computed. The algorithm maintains
two tables, namely V and π, to record (1) the maximum
lower bound of the expected accumulated rewards and (2)
the COA policy that produces this maximum lower bound.
The pseudo-code of the MLBEAR algorithm is shown in
Figure 1.

The idea is to build a |S| × (|Time| + 1) table, where
S is the set of all possible states and Time is the set of all
time points. The entry at the i’th row and the j’th column
of the table stores (1) the maximum lower bound of the ex-
pected accumulated reward of the agent ψ1 if the initial state
is Si and the initial time point is tj ; and (2) the COA that ψ1

Function MLBEAR()
1. For i = 0 to |S| − 1
2. v(Sm+1

i) = 0
3. For j = m down to 0
4. For i = 0 to |S| − 1

5. (v(Sj
i), π(Sj

i , tj)) = update(i, j)
6. return v(S0

0)

Function update(i, j)

1. Let C1 be the set of all COAs of the agent ψ1 that are applicable to Sj
i

2. For each C ∈ C1
3. v(C) = minvalue(2, {C})
4. Cmax := arg maxC∈C1 v(C)
5. Return (v(Cmax), Cmax) // the value of the max node and the COA

Function minvalue(k, ρ)
1. If k ≤ n, then
2. Let Ck be the set of all COAs of the agent ψl that are applicable to Sj

i

3. For each Cl ∈ Ck

4. vl := minvalue(k + 1, ρ ∪ {Cl})
5. Minimize

P
1≤l≤|Ck|

{vl × pl} subject to the constraints CONS(Πk, S
j
i)

6. Return the minimum value // the value of the LB node
7. Else
8. Snext := next(Sj

i , ρ) // the set of all possible next states after executing ρ
9. r := R1(Sj

i , ρ) // the reward earned by ψ1 at time tj when executing ρ at tj
10. return r +

P
S∈Snext

{P (S)× v(S)} // the value of the reward node

Figure 1: The pseudo-code of MLBEAR algorithm, the dynamic algorithm for computing the maximum lower bound of
expected accumulated reward (MLBEAR).

should take at time tj in order to obtain the maximum lower
bound. We denote the maximum lower bound and the COA
of the (i, j) entry by v(Sji) and π(Sji , tj), respectively. We
can see that the maximum lower bound of the expected ac-
cumulated rewards would be v(S0

0), where S0
0 is the initial

state. After we build such a table, we can look up the so-
lution v(S0

0) and the COA policy π from the table. Here
we make the assumption of full observability, i.e., ψ1 knows
which state it is in at any time point, such that ψ1 can use
the COA policy π to determine what action it should take at
the observed state at different time in order to get the reward
v(S0

0).
The MLBEAR algorithm is a dynamic programming al-

gorithm for computing the tables. Initially, the algorithm
sets v(Sm+1

i) to zero for all 0 ≤ i < |S|. Then the table
is filled out backward in time by a function called update,
which computes and returns a pair (v(Sji), π(Sji , tj). After
all entries are filled out, the maximum lower bound of the
expected accumulated reward of ψ1 is v(S0

0).

The Update Tree
The update function in the MLBEAR algorithm relies on
another function called minvalue. The computations of
these functions can be illustrated by the update tree as shown
Figure 2. There are four kinds of nodes in the update tree:
(1) the state nodes (the circles) correspond to states at dif-
ferent times; (2) the max nodes (the upward triangle) are the
decision nodes of the agent ψ1; (3) the LB nodes (the down-
ward triangles) are the decision nodes of the other agents ψ2,

ψ3, . . . , ψm; and (4) the reward nodes (the square nodes)
correspond to the COA profiles. The root node of the tree is
the state node of the state Sji whose entry in the table has yet
to be filled out. The leaf nodes of the tree are the state nodes
of the states at time tj+1 that are possibly reachable by some
COAs from Sji . Below the root node is the max node, and
above the leaf nodes is a layer of reward nodes. Between the
max node and the layer of reward nodes are (n − 1) layers
of LB nodes (LB stands for “lower bound”). There is a layer
of triangle nodes (the max node and the LB nodes) for each
agent.

Now let us explain the meaning of the edges in the update
tree. Let Ci be the set of all applicable COAs that the agent
ψi can choose at Sji . For each COA C ∈ C1, there is an edge
emanating from the max node and connecting to a LB node
for the agent ψ2. In Figure 2, there are three edges between
the max node and the layer of LB nodes because |C1| =
3. Likewise, every LB node for the agent ψk has |Ck| child
nodes. The COAs on the path from the max node to a reward
node σn+1 constitutes a COA profile ρ that is feasible w.r.t.
state Sji . This construction makes sure that every feasible
COA profiles is represented by some path between the max
node to the layer of reward nodes. There is an edge between
a reward node and a state nodes Sj+1

i if Sj+1
i a state that is

reachable from Sji by some effect profile of the COA profile
ρ at Sji .

Notice that the ordering of the other agents in the con-
struction of the tree does not affect our result; but we believe

.

Sj
i

Sj+1
0 Sj+1

1 Sj+1
2 Sj+1

3 Sj+1
4 Sj+1

5 Sj+1
6

State at time t

Max node for agent a1

LB node for agent a2

LB node for agent a3

Reward nodes for time tj

States at time tj+1

Figure 2: The propagation of values in the update function and the minvalue function. n = 3, |C1| = 3, and |C2| = |C3| = 2.

that our algorithm would run faster if we order the agents ac-
cording to the number of applicable COAs, such that the LB
nodes with large branching factors are at the top of the up-
date tree. The reason is that this ordering can reduce the size
of the update tree.

Value Propagation on the Update Tree
The computation of v(Sji) in the function update and
minvalue is graphically equivalent to the propagation of the
values of the state nodes at time tj+1 to the root node over
the update tree. There is a value associated with each inter-
nal node of the tree, and we denote the value of the internal
node σ by v(σ). v(σ) depends only on the value of the child
nodes of σ. The algorithm first computes the values of the
reward nodes, then the values of the LB nodes, and finally
the value of the max node.

Consider a reward node σn+1. Let ρ be the COA profile
corresponding to the path from the max node to σn+1. The
algorithm computes v(σn+1) from the value of the states
nodes for the states in next(Sji , ρ) by the following equation:

v(σn+1) = R1(Sji , ρ)+
∑

Sj+1
E ∈next(Sj

i ,ρ)

P (Sj+1
E)×v(Sj+1

E),

where E is the effect profile and R1(Sji , ρ) is the reward of
the agent ψ1 if the COA profile at Sjk is ρ. v(σn+1) is the
lower bound of the expected accumulated reward given that
(1) the agents choose COAs in ρ, and (2) the agentψ1 choose
COAs that yield an maximum lower bound of the expected
accumulated reward starting from time tj+1. The pseudo-
code of this equation is shown in Line 8–10 of the minvalue
function in Figure 1.

The value of LB nodes can be computed as follows. Con-
sider a LB node σk for the agent ak. Let ρ′ be the set
of COAs corresponding to the path from the max node to
σk, and let child(σk) = {σk+1

1 , σk+1
2 , . . . , σk+1

|Ck| } be the set
of all child nodes of σk. The value of the LB node σk is

the lower bound of the expected accumulated reward given
that (1) the agents ψ1, ψ2, . . . , ψk−1 choose the COA in
ρ′, and (2) the agent ψk choose COAs that yield an maxi-
mum lower bound of the expected accumulated reward start-
ing from time tj+1. Since we don’t know which COA the
agent ψk would choose, we will rely on the given SOMA-
program Πk of the agent ψk to determine the probability
distribution of COAs for ψk. Consider the set of constraints
of CONS(Πk, S

j
i). A solution of this set of constraints is

a probability distribution of the COAs for ψk at Sji . Let pl
be the variable denoting the probability that the ψk would
choose the COA Cl and the child LB node is σk+1

l , for
1 ≤ l ≤ |Ck|. Then consider the optimization problem
whose objective is to minimize the value of∑

1≤l≤|Ck|

{
pl × v(σk+1

l)
}
,

subject to the constraints CONS(Πk, S
j
i). Then we argue

that the minimum value of this optimization problem is the
lower bound for the value of σk. In short, the reason is that
v(σk+1

l) is the minimum value, and even if we substitute a
larger value for v(σk+1

l) in the objective function, the value
of the objective function would not decrease; thus v(σk) is
the minimum value. The pseudo-code of this computation is
shown in Line 2–6 of the minvalue function in Figure 1.

The max node σ1 represents the decision node of the
agent ψ1 and thus we should maximize the value of the
max node. The update function in Figure 1 assigns
maxσ2

l ∈child(σ1){v(σ2
l)} to v(σ1), where child(σ1) is the

set of child nodes of σ1. The value of V (Sji) is v(σ1) and
π(Sji , tj) is arg maxσ2

l ∈child(σ1){v(σ2
l)}.

Summary
A common problem that policy makers need to deal with
is how their organization can repeatedly interact with other

organizations such that the long-term utility of their organi-
zation can be maximized, given that the policy makers have
little information about the decision making process of other
organizations. We formulate this problem as an extension of
the conventional repeated game models or Markov Games
(Littman 1994) by incorporating several useful features: (1)
the use of probability intervals to handle missing informa-
tion; and (2) the state-dependent payoff matrix—the reward
function can change from one state to another.

We model the behavior of other agents by SOMA-
programs, a rich language for modeling agents. SOMA-
programs permit a high degree of ignorance about the other
agent’s behavior—the agent modeler does not need to give
the exact probability distribution of the courses of action that
the other agents would choose given a state. We proposed an
algorithm to compute a policy such that the lower bound of
the expected accumulated rewards of the agent can be max-
imized.

In future, we would like to address the following issues:

• Like many dynamic programming algorithms such as the
value iteration algorithm for MDPs, our algorithm suf-
fers from the curse of dimensionality—the MLBEAR al-
gorithm enumerates all possible states in order to com-
pute the lower bound of the expected accumulated re-
wards. The running time of the MLBEAR algorithm can
be very large, since the number of states is exponential
to the number of atoms, and in practical applications we
need a large number of atoms to model a game prop-
erly. Recently, there has been work on approximate dy-
namic programming, which uses various approximation
techniques to cope with the curse of dimensionality. In
future, we would like to see how to apply these approxi-
mation schemes to the MLBEAR algorithm.

• Our key assumption is that the behavior of the other
agents would not change during the entire course of the
interactions. This assumption holds in some domains
(e.g., in the manufacturer-suppliers problem). If this as-
sumption does not hold, we need to update the SOMA-
programs during the course of interaction. Therefore, we
want to see how to incorporate online SOMA-programs
learning method in the MLBEAR algorithm.

• In future, we will implement and evaluate the MLBEAR
algorithm.

References
Dearden, R., and Boutilier, C. 1997. Abstraction and ap-
proximate decision-theoretic planning. Artif. Intel. 89(1–
2):219–283.
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An algo-
rithm for probabilistic planning. Artif. Intel. 75(1–2):239–
286.
Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In ICML.
Simari, G.; Sliva, A.; Nau, D.; and Subrahmanian, V. 2006.
A stochastic language for modelling opponent agents. In
AAMAS. To appear.

Younes, H. L. S.; Littman, M. L.; Weissman, D.; and As-
muth, J. 2005. The first probabilistic track of the interna-
tional planning competition. JAIR 24:851–887.

