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Abstract— To generate plans for collecting data for data
mining, an important problem is information volatility during
planning: the information needed by the planning system may
change or expire during the planning process, as changes occur in
the data being collected. In such situations, the planning system
faces two challenges: how to generate plans despite these changes,
and how to guarantee that a plan returned by the planner will
remain valid for some period of time after the planning ends.

The focus of our work is to address both of the above
challenges. In particular, we provide:

1) A formalism for reactive query policies, a class of strategies
for deciding when to reissue queries for information that has
changed during the planning process. This class includes all
query management strategies that have yet been developed.

2) A new reactive query policy called the presumptive strategy.
In our experiments, the presumptive strategy ran exponen-
tially faster than the lazy strategy, the best previously known
query management strategy. In the hardest set of problems
we tested, the presumptive strategy took 4.7% as much time
and generated 6.9% as many queries as the lazy strategy.

I. INTRODUCTION

One difficulty with integrating planning and data mining is
that the results of data collection and analysis may influence
the planning process itself. To decide how best to plan for
subsequent data-collection and analysis efforts, the planner
may need to request information from external information
sources such as sensors, databases, data analysis programs,
web services, and the like, incurring a lag time for receiving
the answers. Furthermore, the planning activity may occur
over a period of several hours or even several weeks [1]–
[4]. This forces the planner to deal with information volatility
during planning: as changes occur in the external world, the
information needed by the planning system may change or
expire before the planning process completes.

AI-planning researchers have not paid much attention to
information volatility during planning. Instead, their research
has concentrated on static environments in which no changes
occur in the world other than the ones caused by executing the
planner’s plans. But it is easy to find many practical situations
in which information volatility occurs. For instance:

• For analyzing large amounts of data in data mining
and other applications, grid computing is an increasingly
important technique [5]. In grid- and utility-based com-
puting applications [6], one might want to reserve com-

Fig. 1. A screenshot of an online airline-ticket reservation system. The prices
expired while the user was trying to plan other details of the trip.

puting resources owned by several different companies
though some grid services on the Web to accomplish a
computational task, but the availability and the amount
of the resources will keep changing.

• When collecting and analyzing data from web services,
one problem is that the information can change very
frequently. In [3] and [4], Kuter et al. describe a domain-
specific system that uses AI planning to do web ser-
vice composition; this system was explicitly designed to
change its plans in response to information volatility.

• Readers who have tried to make travel plans will probably
recognize the kind of screenshot in Figure 1. Here, the
information about an airline flight expired while one of
us was trying to plan some other details of a trip.

In such environments, how to cope with changes of external
information and at the same time generate a plan that can be
executed correctly is a big challenge. Most existing planners
will not do this correctly unless they are modified.

In some cases, the interleaving of planning and execution [7]
is a good strategy to deal with volatile information. But if the
wrong choice of action can cause a failure that is irrecoverable
(or recoverable only at a large cost), then it is necessary for the
planning system to reason, while the plan is being generated,
about whether the assumptions that are being used to choose
an action will still be true when the action is executed.

To the best of our knowledge, our previous work [8] was
the first to provide a way for planning systems to do such
reasoning. A primary limitation of that work was that although
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it provided plans that were guaranteed to be correct at the time
they were returned by the planner, there was no guarantee that
such plans would be correct even a millisecond later. In this
paper, we examine how to produce plans that are guaranteed to
remain valid for some period of time T after they are returned.

In another previous paper [9], we did a theoretical study
of whether a planner in a volatile external information envi-
ronment can ever be complete. More precisely, we provided
an incompleteness theorem showing that it is, in principle,
impossible to have a planner that can successfully find a valid
solution in every solvable environment.1

There is no way that can get around with the incompleteness
without modifying the underlying assumptions of the problem.
However, if we are willing to give up the requirement that a
planner be complete, then it is possible to design planners
that have a high probability of returning a solution in prac-
tical planning problems. This is the direction that this paper
pursues. In particular, our contributions are:

1) We provide a formalism for a large class of query
management strategies (i.e., strategies for when to reissue
queries for information that changes during the planning
process) that we call reactive query policies, by rep-
resenting these strategies as collections of event-driven
rules. We state the condition under which a reactive query
policy can return plan would remain valid for a given
period of time. This class includes all query management
strategies that have appeared in the published literature.

2) We provide new reactive query policy called the pre-
sumptive strategy. In our experiments, the presumptive
strategy ran exponentially faster than the lazy strategy, the
best previously known query management strategy [8].
In the hardest set of problems we tested, the presumptive
strategy took only 4.7% as much time and generated only
6.9% as many queries as the lazy strategy.

II. PROBLEM DEFINITION

In this section, we define planning problems that require
planners to gather information from external information
sources in order to accomplish the planning task. Then we
describe a way to turn any planner into one that can handle
external information. Finally, we define a model of volatile
external information, and the information-gathering planning
problems whose external information are volatile.

A. Planning with External Information

In the AI planning literature, it is conventional to assume
that a planner begins with a complete description of the world,
and that the world remains static while the planner is running.
We will use the word conventional to refer to these planning
problems, the languages in which they are written, and the

1This theorem resembles the famous impossibility theorems in distributed
systems (http://www.podc.org/influential/2001.html), which say that some
problems in distributed systems are fundamentally unsolvable [10]. Remedy-
ing this problem is far from trivial, because it requires modifications to the
fundamental assumptions of the distributed system model people have been
used. Many of those solutions are not ideal, but they are needed in order to
able to solve certain problems.

planners that solve them. Depending on the type of problem
in question, a solution to a conventional planning problem can
be either a plan or a policy. A conventional planning problem
P can have more than one solution; let solution(P ) be the
set of all solutions of P . A conventional planner A takes P
as an input and generates a solution or a symbol Failure. We
denote the output by A(P ). If A is complete, then either (1)
A(P ) ∈ solution(P ) if solution(P ) is not an empty set, or
(2) A(P ) = Failure if solution(P ) is an empty set.

Let L be a conventional planning language such as
PDDL [11]. We’ll construct a new language L̂ that contains
all the symbols of L plus a finite set Û of additional symbols
called unknowns. For each unknown u ∈ Û , there is a set
dom(u) of terms in L. We call dom(u) the domain of u,
and the terms in dom(u) the values of u. For any expression
e in L, let terms(e) be the set of all terms in e. Then we
construct a set L̂ of expressions by taking any expression
e in L and replacing zero or more terms in terms(e) with
unknowns. More precisely, let e[t1/t′1, t2/t′2, . . . , tk/t′k] be the
expression after replacing the term ti in e with another term t′i,
for 1 ≤ i ≤ k. Then the new language is L̂ = {e[(ti/ui)i..k] :
e ∈ L, {t1, t2, . . . , tk} ⊆ terms(e), ti ∈ dom(ui)}.

For any expression ê ∈ L̂, let unknowns(ê) be the set of all
unknowns in ê. Then we say ê is EI-ground (“EI” stands for
“external information”) if unknowns(ê) = ∅; otherwise it is
EI-unground. Clearly, an EI-ground expression is in L. A EI-
ground expression e is a EI-instance of ê if e can be obtained
from ê by substituting values for the unknowns in ê. Thus,
the set of all EI-instances of ê, denoted by instances(ê), is
{ê[(ui/vi)i=1..k] : ui ∈ unknowns(ê), vi ∈ dom(ui)}.

Suppose A is a conventional planner whose problems are
written in L. Let P ⊆ L be the set of all planning problems for
A. We extend P to P̂ = {ê : ê ∈ L̂, instances(ê) ⊆ P}. The
planning problems in P̂ are called EI-problems. For simplicity,
we require that for any P̂ ∈ P̂ , instances(P̂ ) ⊆ P .

A possible solution for a EI-problem P̂ ∈ P̂ is any solution
for any EI-instance of P̂ . A EI-planner is a planner whose
input is a EI-problem P̂ and whose output is a possible
solution for P̂ . A EI-planner can be constructed from a
conventional planner A by a EI-conversion as follows: Â is
exactly the same as A except it maintains every unknown
symbolically in its execution state, an aggregation of all data in
the memory, register, invocation stack, program counter, etc.,
at a particular moment of time of the execution of Â. When Â
tries to read the value of an unknown u for the first time during
its execution, Â suspends itself, requests a value for u, waits
until a value for u comes back, and then resume its execution.
There are other type of planner-specific EI-conversions (e.g.
ENQUIRER [3]) that might not require planners to wait for an
answer after a query is made. However, these EI-conversions
rely on the internal structure of the conventional planners,
hence are not applicable to every conventional planner.

B. Planning with Volatile External Information

If external information is static (i.e., the values for the
unknowns never change), all we need to solve a EI-problem is
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Fig. 2. The lag time and the valid time of a query q. v(q) is guaranteed
valid only between treturn(q) and texpire(q). After texpire(q), the value
may possibly change.

a EI-planner derived from a sound and complete conventional
planner (by EI-conversion); otherwise, Â will not be sufficient
by itself, because the substituted value in Â’s execution state
may change before the end of the planning process. Therefore,
we need to develop a new kind of planners, which we’ll call
a VEI-planner (volatile external information planner), that can
manage the planning process in reaction to changes in values.
Like a EI-planner, a VEI-planner takes a EI-problem and
returns a possible solution; but the VEI-planner’s solution must
satisfy certain volatile-information requirements as described
below.

In our model of volatile external information, volatile infor-
mation are time-dependent. For each unknown u, we assume
there is a piecewise-constant function Vu : R≥0 → dom(u),
which specifies the value of u at time t, and R≥0 is the set of
non-negative real numbers. At any time t, we say Vu(t) is the
valid value of u. At the beginning, a VEI-planner Ã knows
nothing about Vu; the only way for Ã to get to know the valid
values of an unknown is to issue queries to an information
source Iu, which is the sole authority to tell Ã about Vu.
There may be several information sources, and we assume Ã
knows which information source it should send a query to.

Suppose Ã sends a query q for an unknown u to Iu

at time tissue(q), and then Iu returns a value v(q) for q
at time treturn(q) > tissue(q). If Ã knows nothing about
how long v(q) will remain true, it cannot provide any sort
of guarantee about the correctness of the plan it generates:
the information may change during plan execution, invali-
dating the plan. Thus, Ã needs to have a lower bound on
how long the information will remain true. Therefore, we
assume that Iu’s answer ans(q) will include both v(q) and
an expiration time texpire(q) > treturn(q); that is, ans(q) =
(u, v(q), texpire(q)). As shown in Figure 2, v(q) is guaranteed
to be valid until texpire(q), after which time it may change.

v(q) is said to remain valid until texpire(q), i.e., for any
time t on or after treturn(q) and before texpire(q), v(q) =
Vu(t); for any t′ ≥ texpire(q), Vu(t′) may be v(q) or may be
something different. The lag time of q is tlag(q) = treturn(q)−
tissue(q), which includes both the time Iu takes to process the
query and the time that messages travel back and forth. The
valid time of q is tvalid(q) = tvalid(q)− texpire(q).

A VEI-problem P̃ is a pair 〈P̂ , T 〉, where P̂ is an EI-
problem and T ∈ R≥0 is a validity guarantee. Informally,
a solution for P̃ is any solution for P̂ that remains valid for a
time ≥ T . More formally, we define the current EI-instance of
P̂ at time t to be groundt(P̂ ) = P̂ [(ui/Vui

(t))i=1..m], where
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Fig. 3. Architecture for separate planning and query management. The VEI-
planner takes a EI-problem P̂ and a validity guarantee T , and generates a
T -valid solution π. The planning task is conducted by a EI-planner Â, which
can be obtained from a conventional planner by a EI-conversion.

{u1, u2, . . . , um} = unknowns(P̂ ). A possible solution π of
P̂ is valid at time t if π ∈ solution(groundt(P̂ )). Also, π is
T -valid at time t if π remains valid during the time interval
[t, t+T ) (i.e., π ∈ solution(groundt′(P̂ )) for t ≤ t′ < t+T ).
π is a T -valid solution for P̃ if and only if π is T -valid at the
time the VEI-planner returns π.

A VEI-planner is a planner that takes a VEI-problem 〈P̂ , T 〉
as an input and generates a possible solution π for P̂ . A VEI-
planner is successful for 〈P̂ , T 〉 if π is a T -valid solution.

III. AN ARCHITECTURE OF VEI-PLANNERS

Since the management of queries is quite different from
the planning task, it is natural to consider a class of VEI-
planners in which planning and query management are handled
by two different processes. Therefore, we propose a class of
VEI-planners as shown in Figure 3. In these VEI-planners,
the planning task is conducted by a EI-planner Â, and the
queries and answers are managed by an event-driven procedure
called the VEI-controller, whose functionality is encoded as a
reactive query policy. Â does not interact with the external
world directly; instead, all the requests for values made by
Â are managed by the VEI-controller, which continuously
waits for events such as requests for values by Â and answers
from information sources. Once an event is received, the VEI-
controller will choose one of the rules in the reactive query
policy and “fire” it—generating a sequence of commands to
control the planning process of Â and the issue of queries.

The VEI-controller controls the planning process of Â
though the help of a data structure called execution tree, which
allows the VEI-controller to store execution states of Â and
then later on resume the execution of Â from one of the
stored execution states. Likewise, the VEI-controller manages
answers returned from information sources by a buffer, which
holds the latest answers returned from information sources.
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Fig. 4. An execution tree. Circles represent execution states where values
have been requested. Edges represent substitutions for these values. For
example, um is requested in state E2, and the four edges below E2 represent
the four different possible values f um. Hexagons represent terminal execution
states from which a solution can be extracted. Squares represent the latest
non-terminal execution states of execution traces.

A. EI-planner and Execution Tree

Figure 4 illustrates the structure of an execution tree.
Different paths from the root correspond to execution traces
of Â with a different values for the unknowns. Each internal
node corresponds to a value-requesting execution state, i.e.,
an execution state in which Â has requested a value for an
unknown; and the edges emanating from this node represent
different answers to the query (hence different values for the
unknown). Each leaf node corresponds to the latest (terminal
or non-terminal) execution state that Â has generated in this
particular execution trace.

While Â is executing, the VEI-controller maintains a pointer
to the current node in the execution tree, i.e., the node that
corresponds to Â’s current execution state. The VEI-controller
does not update this pointer constantly during Â’s execution,
but only when the Â suspends itself.

The execution tree grows as value substitutions occur. When
Â requests the value of some unknown u, it suspends itself,
and the VEI-controller stores Â’s execution state E at the
current node. Later, the VEI-controller can substitute u for a
value in E. When it does so, it will create a new child node
E′ for E that contains the execution state of Â right after the
substitution in E′. It will label the edge between E and E′

with the value substituted for u.
The set of commands that the VEI-controller can use to

control the EI-planner Â and the execution tree are:
• Resume(E): resume Â from the execution state E. Pre-

conditions: Â has been suspended. Effects: Â is resumed,
and E is designated as the current node.

• Suspend: suspend the execution of Â. Preconditions:
Â is running. Effects: Â is suspended, and the current
execution state of Â will be stored at the current node.

• Substitute(E, u, v): replace all the unknown symbol u
in an execution state E with v. Preconditions: E is a
value-requesting execution state. Effects: the execution

state after the substituion will be stored as a new child
node of E.

The EI-planner Â will generate the following event:
• Request(E, u): Â has requested a value for an unknown

u at the execution state of the node E. Notice that when
this event occurs, Â will automatically suspend itself.

• Terminate(E): Â has terminated at execution state E.
The VEI-controller can retrieve various information from
the EI-planner and the execution tree using the following
functions:

• Running(): return true iff the EI-planner is running.
• Suspended(): return true iff the EI-planner is suspended.
• Depended(E): return the set of all unknowns that are

substituted for some values in some parent nodes of E in
the execution tree. We call these unknowns the depended
unknowns of the execution state E.

• MatchAnyNode(): return the execution state E in the
execution tree such that the values of the depended
unknowns of E are in the buffer. These values can be
either valid or expired.

• MatchValidNode≥T (): return the execution state E such
that the values of the depended unknowns of E will
remain valid for at least a period of time T .

B. Buffer

The buffer stores the latest values of unknowns and
the corresponding expiration time. Initially, the buffer is
empty. When the VEI-planner receives an answer ans(q) =
(u, v(q), texpire(q)), the VEI-planner will automatically store
ans(u) in the buffer. If the buffer contains a previous answer
of u, the new answer will replace the old one. In addition,
there is a counter query num(u) for each unknown u that
records the number of unanswered queries. When the VEI-
planner issues a query for u, it will increase query num(u)
by 1; when the VEI-planner receives an answer for u, it will
decrease query num(u) by 1.

There is no command for the VEI-controller to control the
buffer, since the buffer is fully-automated. But there is one
command that could affect the buffer indirectly:

• Issue(u): issue a query for an unknown u to the informa-
tion source Iu. Preconditions: none. Effects: increase the
counter query num(u).

The buffer can generate these events:
• Answer(u, v, texpire): the answer of a previously issued

query for the unknown u has arrived; the answer is
(u, v, texpire).

• WillExpire≤T (u): the value of u in the buffer will expire
after a period of time T .

• Expired(u): the value of u in the buffer has expired.
The VEI-controller can retrieve various information from the
buffer by the following functions:

• ValueOf(u): return the (expired or valid) value of the
unknown u in the buffer.

• NoQuery(u): return true iff query num(u) = 0.
• SomeQuery(u): return true iff query num(u) > 0.
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Procedure VEI-controller(Ω)
Input: A reactive query policy Ω

Loop
Wait until the event queue is not empty
Remove the first event e from the event queue
Find a rule ((ε, ϕ) → λ) ∈ Ω, such that e and ε are

unificable and the condition ϕ[φ] is true, where
φ is the substitution in the unification of e and ε

Generate(λ[φ])
End Loop

Procedure Generate(λ)
If λ is a primitive command, then

Output c; If c is Return(E), then stop the VEI-planner.
Else if λ is a list of commands (λ1, λ2, . . . , λn), then

Generate(λ1); Generate((λ2, . . . , λn))
Else if λ is a foreach statement (foreach x ∈ S, λ′), then

For each y ∈ S, Generate(λ′[x\y])
Else if λ is a if-then statement (if p then λ′), then

Evaluate the condition p. If p is true, then Generate(λ′)

Fig. 5. The VEI-controller. Ω is a reactive query policy.

• Never(u): return true iff the buffer has no answer for u;
• Valid≥T (u): return true iff the buffer has an answer for

u that will remain valid for at least time T .
• Valid<T (u): return true iff the buffer has an answer for

u that will expire within time T .
• Expired(u): return true iff the answer for u has expired.

C. The VEI-controller and Reactive Query Policies

The VEI-controller is an event-driven procedure that gener-
ates commands according to a reactive query policy, a special
type of reactive plan. A reactive query policy is a set of
rules, each of them has the form (ε, ϕ) → λ, where ε is an
event statement, ϕ is a condition statement, and λ a command
statement (We will define them below). A rule states that if the
event that just occurs matches the event statement ε and the
condition statement ϕ is true, then the VEI-controller should
generate commands according to the command statement λ.
Figure 5 shows the pseudo-code of the VEI-controller.

The inputs and outputs of VEI-controller is in the form of
message passing. There are two types of messages: events
and commands. The formal description of a message is
something like msg(v1, v2, ..., vm), where msg is a mes-
sage identifier and v1, v2, . . . , vm are parameters (m ≥ 0).
In Section III-A and Section III-B, we have described the
five events that can be generated by the EI-planner and the
buffer: Request(E, u), Terminate(E), Answer(u, v, texpire),
WillExpire≤T (u), and Expired(u). We have also described four
commands: Resume(E), Suspend, Substitute(E, u, v), and
Issue(u). We call these commands the primitive commands.
In addition to these primitive commands, there are two more
primitive commands: (1) Nil, which means that the VEI-
controller should do nothing, and (2) Return(E), which means
that the VEI-controller should terminate the VEI-planner and
return a solution in the terminal execution state E.

Events from different sources are temporarily stored in an
event queue. Then the VEI-controller retrieves events one

by one and processes them. There is no message queue for
commands: commands, once generated, will immediately be
executed. We assume that all commands can be carried out
instantly, since the execution time of the commands are small
when compared to the execution time of Â and the lag times
of queries. Therefore there is no need to store commands in
a queue.

A reactive query policy is a set of rules, each of them has the
form (ε, ϕ) → λ. The event statement ε of a rule is like event
messages except that some of the parameters are variables.
The free variables in ϕ and λ must be the variables in the
event statement. When an event occurs, the VEI-controller will
select a rule (ε, ϕ) → λ from the reactive query policy such
that (1) ε is unificable with the event by a substition φ, and
(2) ϕ[φ] (which is ϕ those free variables are substituted by
values according to φ) is evaluated to be true.

For example, consider a reactive query policy that con-
tains a rule (ε, ϕ) → λ, where ε = Request(E, u),
ϕ = Valid≥T (u), and λ = Substitute(E, u,ValueOf(u)).
Note that E and u are free variables. Suppose an event
Request(ES13,Price) occurs at time t (where ES13 denotes
the 13’th execution state in the execution tree), and the
current value for the unknown Price won’t expire before
time t + T . Then the event statement and the event are
unificable by a substitution φ = [E\ES13, u\Price], and the
condition ϕ[φ] = Valid≥T (Price) is true. Thus the VEI-
controller should choose this rule and execute the command
λ[φ] = Substitute(ES13,Price,ValueOf(Price))—substitute
symbols Price in ES13 with the current value of Price.

A condition statement of a rule is a first-order formula
whose free variables are the variables in the event statement
of the same rule. Each bound variable of a condition statement
ranges over a set of unknowns, and each function symbol
must be one of the following: Running, Suspended, NoQuery,
SomeQuery, Never, Valid≥T , Valid<T , Expired, ValueOf,
MatchAnyNode, and MatchValidNode≥T . The corresponding
functions are described in Section III-A and Section III-B.
The range of the bound variables is usually defined by the
Depended function in Section III-A.

A command statement is defined recursively as follows:
(1) a primitive command is a command statement; (2) a
list of command statements is a command statement; (3)
a foreach statement (foreach x ∈ S, λ), where λ is a
command statement, x is a bound variable for λ, and S is the
range of x, is a command statement; (4) an if-then statement
(if p then λ), where p is a condition statement and λ is a
command statement, is a command statement. A command
statement can be parsed by a recursive descent parser, as
shown in the Generate function in Figure 5. During parsing,
primitive commands are generated one by one.

Theorem 1 gives a sufficient condition for a reactive query
policy Ω such that all solutions returned by Ω are T -valid
solutions.

Theorem 1: A solution π returned by a reactive query
policy Ω is T -valid if for every rule in Ω containing the
command Return(π), the condition statement contains (∀u ∈
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Depended(E),Valid≥T (u)).
Proof: The condition says that when Ã terminates and

return a solution π, all values of the depended unknowns of
the terminal execution state will remain valid for at least a
period of time T . By the definition of T -valid solutions, π is
T -valid if this condition holds.
However, Theorem 1 is not a necessary condition. This means
that it is possible to write a reactive query policy that al-
ways returns a T -valid solution, but the condition statements
for some Return commands do not contain ϕ′ = (∀u ∈
Depended(E),Valid≥T (u)). But notice that there is no harm
in appending ϕ′ to any existing condition statement ϕ for
Return commands (i.e., replacing every rule (ε, ϕ) → λ in
which λ contains a Return command by (ε, ϕ ∧ ϕ′) → λ).

IV. A NEW QUERY MANAGEMENT STRATEGY

Both the eager strategy Meager and the lazy strategy Mlazy

in [8] can be formulated as reactive query policies. Since the
set of reactive query policies is very large, there may be some
that outperform the eager and lazy policies. One of them is
our new presumptive query management strategy.

Like Meager, the presumptive strategy issues queries for
values when the old values expire. But unlike Meager, it does
not backtrack immediately, but continues as if the old value
were still valid (like Mlazy does). Once the new value comes
back from the information source, the presumptive strategy
backtracks if the new value differs from the old one, and keeps
going otherwise.

There are reasons to believe that in general, the presumptive
strategy will perform better than both Meager and Mlazy .
First, when compared with Meager, it does not wait for
the information sources after a query is issued—instead, it
does additional work that may save time later. Second, when
compared with Mlazy , it issues queries more often, hence is
more likely to backtrack from branches that may be incorrect.

The presumptive strategy can be written as a reactive query
policy as follows.
Rule 1: Request(E, u) ∧ Never(u) → Issue(u)
Rule 2: Request(E, u) ∧ Valid≥T (u) → Substitute(E, u,

ValueOf(u)),Resume(MatchAnyNode())
Rule 3: Request(E, u) ∧ (Valid<T (u) ∨ Expired(u)) →

Substitute(E, u,ValueOf(u)),Resume(
MatchAnyNode()), (if NoQuery(u) then Issue(u))

Rule 4: Answer(u, v, texpire) ∧ (¬Valid≥T (u)) → Issue(u)
Rule 5: Answer(u, v, texpire) ∧ (Valid≥T (u) ∧ Running()) →

Suspend,Resume(MatchAnyValue())
Rule 6: Answer(u, v, texpire) ∧ (Valid≥T (u) ∧

Suspended()) → Resume(MatchAnyValue())
Rule 7: WillExpire≤T ∧ True → Issue(u)
Rule 8: Terminate(E) ∧ (¬(∀u ∈ Depended(E),

Valid≥T (u))) → Nil
Rule 9: Terminate(E) ∧ (∀u ∈ Depended(E),

Valid≥T (u)) → Return(E)
Rule 10: Expire(u) ∧ True → Nil

Thus, it seems reasonable to expect that (1) the pre-
sumptive strategy will have a higher success rate than the

other strategies, because it issues queries more often, and
(2) in situations where all three strategies can terminate, the
presumptive strategy will terminate more quickly. We now
describe experimental tests of these hypotheses.

A. Experimental Evaluation
We wanted to compare the performance of the reactive

query policies with planners that behaved very differently, and
with different kinds of problem domains. For our planners,
we used Graphplan [12] and SHOP2 [13]. For our problem
domains, we used the well-known logistics domain, and the
satellite domain from the AIPS-02 planning competition.

Figures 6–8 show our results for the logistics domain
and satellite domain. Our tests were based on 16 logistics
problems and 10 satellite problems chosen at random from the
problem archives for the AIPS-2000 and AIPS-02 Planning
Competitions. For each value of n (shown on the x axis in
each figure) we did the following: we converted each of the
logistics/satellite problems into a EI-problem by inserting n
unknowns into the problem at random locations. For each
of the EI-problems, we ran each combination of planner and
reactive query policy 1000 times; thus each data point is the
average of at least 10,000 trials. Within each trial, whenever
the reactive query policy issued a query, we generated a value,
a lag time, and a valid time at random, with the lag times and
valid times varying from 1 to 10. The validity guarantee is 1.
In each trial, we ran the reactive query policy until it either
terminated or reached 100,000 seconds of CPU time.

Each figure contains nine lines, but some of them are so
close as to be indistinguishable. For each of the three reactive
query policies, there is a line for Graphplan in the logistics
domain, a line for SHOP2 in the logistics domain, and a line
for SHOP2 in the satellite domain.

Over all of the combinations of strategies, planners, and
planning problems, there are 972,000 trials, with a total
running time well in excess of 1×108 seconds—which hardly
seems feasible for an experimental test! But there was an easy
way to reduce the total amount amount of time needed for the
test. For each combination of planner, strategy, and planning
problem, we ran the planner on each path in the query tree,
and kept track of the timing data for each edge of the tree.
The timing data for each edge remains constant regardless of
the query strategy, this enabled us to calculate the planner’s
running time for all of the trials very quickly.

The figures reveal several interesting things:

Success rates. As the number of unknowns increases, the
eager strategy’s success rate drops to 0. The eager strategy
issues a query every time a value expires, and it waits to
get the answer before proceeding; hence it easily ends up in
situations where it fails because it never has a complete set of
valid values at any one time. In contrast, both the presumptive
and lazy strategies have success rates of 100%, except for the
lazy strategy with 9 unknowns.

Average running times. On the semi-log plot used in the
figure, the running times for the presumptive and lazy strate-
gies are relatively straight except for small values of n, thus
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Fig. 6. Success rates for the three query strategies.
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Fig. 7. Average CPU times in seconds.

both of them have exponential running time. The lines’ slopes
show that the lazy strategy’s running time grew exponentially
faster than the presumptive strategy’s. At 8 unknowns, the
presumptive strategy ran an average of 21.2 times as fast as
the lazy strategy.

The data points for the eager strategy are missing for n > 4
because it failed to terminate within our time limit. The graph
suggests that the running time for the eager strategy might be
growing hyper-exponentially, but there are so few data points
that it is difficult to tell.

Average number of queries. The results are similar to
those for the running time. The lazy strategy’s numbers grew
exponentially faster the presumptive strategy’s, and at n = 8
the lazy strategy made an average of 14.4 times as many
queries as the presumptive strategy.

Query tree size. The query trees had 16 leaf nodes when
n = 4, and 512 when n = 9. Thus, the lazy and presumptive
strategies solved problems about 32 times as large as the eager
strategy could solve.

Domain independence and planner independence. A result
we hadn’t expected was that the performance of each reactive
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Fig. 8. Average number of queries.

query policy was almost completely independent of the planner
and the planning domain. On every graph and for each strategy,
the three lines for that strategy are nearly identical.

First, in both the logistics domain and the satellite domain,
if we look at the original planning problems (without the
unknowns), the problem is always solvable: there is always
a path to the solution. For both planners, the amount of
time needed to find this path was smaller than the overhead
generated by the queries, so the time taken by the planner did
not matter very much. What mattered most was how long it
took to get valid values for all of the unknowns at the same
time, and this was independent of the planner.

Second, in both problem domains, at each data point there
were the same number of unknowns, and each unknown had
roughly the same number of possible values, regardless of the
domain. Thus, every query tree had roughly the same number
of leaf nodes. In every path in the query tree, values were
required for all of the unknowns, so every leaf node was at the
same depth. Thus, all that mattered was how quickly a reactive
query policy could get to that depth—which was independent
of the problem domain.

Finally, each data point is the average of 1000 trials. Thus,
the data points are not subject to the random variation that
would occur in smaller experiments.

V. RELATED WORK

The related areas of work include multi-agent environments
where planners interact with other agents, and application
areas such as multi-robot environments, distributed database
management systems, servers distributed over the Internet,
logistics, manufacturing, evacuation operations and games.

Our work differs from [8] in that our system guarantees
a solution remain valid for some period of time after it
is returned. This guarantee is important in mission-critical
applications that cannot tolerate any fault in plan execution
(e.g, robotic control in space exploration or factories). Such
guarantees are impossible unless the expiration times (or at
least a lower bound on it) are known.

249

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)



As discussed in [8], our problem shares some aspects of
the contingent planning problem with partial observability [7],
[14], [15]. The key difference is that our sensing actions
are queries that are executed during plan generation rather
than during plan execution. The interleaving of planning and
execution [7] is sometimes a way to deal with the expiration
of values, but it relies on the detection of the failure during
plan execution—and in some applications this information is
not available, or failures must be avoided entirely.

A reactive query policy can be considered as a special type
of reactive plan [16]–[19]. The management of the expiration
of answers in real time shares some aspects of the works in
real time searching [20] and real-time path planning [21], [22].
The adaption of new information makes use of the techniques
in plan adaption [23]–[25], especially plan reuse [26], which is
exactly how our query management strategy resume previously
saved runtime stacks of A. The continuation of planning based
on assumption making resembles PUCCINI [27], a partial-
order planner that allows the option of assuming that certain
preconditions hold, performing the action, and verifying the
preconditions afterward.

VI. CONCLUSIONS

For integrating planning and data mining, an important
problem is how the planner should deal with volatile external
information. This paper has focused on how to do that.

We have introduced a general model for planning with
volatile external information, including the notion of a T -valid
plan that will remain valid for at least some time T after it is
generated. We have developed a formalism for reactive query
policies that can be used to adapt existing planners to deal
with volatile information. We have stated the conditions under
which the plan returned by a reactive query policy is T -valid.
Finally, we have introduced a new query management policy
called the presumptive strategy.

In our experiments, the presumptive strategy ran exponen-
tially faster than the best previous strategy, the lazy strategy
[8]. On the largest problems that we tried, the presumptive
strategy took about 1/21 the time and generated about 1/14
as many queries as the lazy strategy The running times were
relatively independent of both the problem domains and the
planners, which suggests that the presumptive strategy may be
better than the lazy strategy across many problem domains.

In some informal experiments that we have not reported in
this paper, we have devised several other query management
strategies and tested the presumptive strategy against them. In
each case the presumptive strategy did best. We conjecture
that under certain conditions the presumptive strategy is an
optimal policy, i.e., that no other query management policy
has a smaller average running time. In the future, we intend to
do a mathematical analysis to confirm or deny this conjecture.
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