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Abstract

The impressive results of the 2007 DARPA Urban
Challenge showed that fully autonomous vehicles are
technologically feasible with current intelligent vehi-
cle hardware. It is natural to ask how current trans-
portation infrastructure can be improved when most ve-
hicles are driven autonomously in the future. Dres-
ner and Stone proposed a new intersection control
mechanism called Autonomous Intersection Manage-
ment (AIM) and showed in simulation that intersec-
tion control can be made more efficient than the tra-
ditional control mechanisms such as traffic signals and
stop signs. In this paper, we extend the study to the real
world by examining the relationship between the pre-
cision of cars’ motion controllers and the efficiency of
the intersection controller. First, we propose a planning-
based motion controller that can reduce the chance that
autonomous vehicles stop before intersections. Second,
we present a mixed reality simulation environment that
allowed an autonomous vehicle in the real world to in-
teract with many virtual vehicles in the AIM simulator.
Finally, we experimentally determine a feasible set of
parameters for the motion controllers in simulation so
as to give a more accurate account of the behavior of
autonomous vehicles.

Introduction
Recent advances in intelligent vehicle technology suggest
that autonomous vehicles will become a reality in the near
future (Squatriglia 2010). However, today’s transporta-
tion infrastructure does not utilize the full capacity of au-
tonomous driving systems. Dresner and Stone proposed a
multiagent systems approach to intersection management,
and in particular describe a First Come, First Served (FCFS)
policy for directing vehicles through an intersection (Dres-
ner and Stone 2008). This approach has been shown, in
simulation, to yield significant improvements in intersection
performance over conventional intersection control mecha-
nisms such as traffic signals and stop signs. Despite, or per-
haps because of the impressive performance, questions are
often raised regarding its applicability to real autonomous
vehicles. In this paper we take the first step to show that
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a real autonomous vehicle can adhere to the FCFS protocol
and efficiently traverse an intersection.

In achieving this first step, we have obtained more accu-
rate details regarding real-world parameters for future use in
simulation. In particular we have confirmed that the noise
and imprecision of a real vehicle is greater than that antici-
pated in the simulation. However, the FCFS algorithm was
designed with parameters (in the form of buffers) that can
be enlarged to account for these deficiencies. Even after the
enlargement of these buffers we can still demonstrate that
FCFS provides a substantial performance improvement over
the four-way stop sign currently located at our test intersec-
tion.

In addition, we believe that it is possible to make this in-
tersection control mechanism more efficient by considering
how best autonomous vehicles can utilize the FCFS pro-
tocol. Armed with an increase in real-world knowledge,
we leverage Little’s law in queueing theory to understand
how the performance of an autonomous vehicle relates to
the overall intersection throughput. Then we identify ap-
proaches to improve the motion controllers of autonomous
vehicles such that they can plan ahead of time when they
make reservations in the FCFS systems and traverse the in-
tersection at a higher speed. We predict that the use of these
planning techniques can improve the throughput of intersec-
tions and reduce the traversal time of vehicles, thus pro-
viding motivation for autonomous vehicles to adopt these
planning-based controllers.

Autonomous Intersection Management
Traffic signals and stop signs are very inefficient—not only
do vehicles traversing intersections experience large de-
lays, but the intersections themselves can only manage a
limited traffic capacity—much less than that of the roads
that feed into them. Dresner and Stone have introduced a
novel approach to efficient intersection management that is
a radical departure from existing traffic signal optimization
schemes (Dresner and Stone 2008). The solution is based
on a reservation paradigm, in which vehicles “call ahead” to
reserve space-time in the intersection. In the approach, they
assume that computer programs called driver agents control
the vehicles, while an arbiter agent called an intersection
manager is placed at each intersection. The driver agents
attempt to reserve a block of space-time in the intersection.



The intersection manager decides whether to grant or reject
requested reservations according to an intersection control
policy. In brief, the paradigm proceeds as follows.
• An approaching vehicle announces its impending arrival

to the intersection manager. The vehicle indicates its size,
predicted arrival time, velocity, acceleration, and arrival
and departure lanes.

• The intersection manager simulates the vehicle’s path
through the intersection, checking for conflicts with the
paths of any previously processed vehicles.

• If there are no conflicts, the intersection manager issues
a reservation. It becomes the vehicle’s responsibility to
arrive at, and travel through, the intersection as specified
(within a range of error tolerance).

• The car may only enter the intersection once it has suc-
cessfully obtained a reservation.
Figure 1 diagrams the interaction between driver agents

and an intersection manager. A key feature of this paradigm
is that it relies only on vehicle-to-infrastructure (V2I) com-
munication. In particular, the vehicles need not know any-
thing about each other beyond what is needed for local au-
tonomous control (e.g., to avoid running into the car in
front). The paradigm is also completely robust to commu-
nication disruptions: if a message is dropped, either by the
intersection manager or by the vehicle, delays may increase,
but safety is not compromised. Safety can also be guaran-
teed in mixed mode scenarios when both autonomous and
manual vehicles operate at intersections. The intersection
efficiency will increase with the ratio of autonomous vehi-
cles to manual vehicles in such scenarios.
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Figure 1: Diagram of the intersection system.

The prototype intersection control policy divides the inter-
section into a grid of reservation tiles, as shown in Figure 2.
When a vehicle approaches the intersection, the intersection
manager uses the data in the reservation request regarding
the time and velocity of arrival, vehicle size, etc. to simulate
the intended journey across the intersection. At each simu-
lated time step, the policy determines which reservation tiles
will be occupied by the vehicle.

If at any time during the trajectory simulation the re-
questing vehicle occupies a reservation tile that is already
reserved by another vehicle, the policy rejects the driver’s
reservation request, and the intersection manager communi-
cates this to the driver agent. Otherwise, the policy accepts
the reservation and reserves the appropriate tiles. The inter-

(a) Successful (b) Rejected

Figure 2: (a) The vehicle’s space-time request has no con-
flicts at time t. (b) The black vehicle’s request is rejected
because at time t of its simulated trajectory, the vehicle re-
quires a tile already reserved by another vehicle. The shaded
area represents the static buffer of the vehicle.

section manager then sends a confirmation to the driver. If
the reservation is denied, it is the vehicle’s responsibility to
maintain a speed such that it can stop before the intersection.
Meanwhile, it can request a different reservation.

Empirical results in simulation demonstrate that the pro-
posed reservation system can dramatically improve the inter-
section efficiency when compared to traditional intersection
control mechanisms. To quantify efficiency, Dresner and
Stone introduce delay, defined as the amount of travel time
incurred by the vehicle as the result of passing through the
intersection. According to their experiments, the reserva-
tion system performs very well, nearly matching the perfor-
mance of the optimal policy which represents a lower bound
on delay should there be no other cars on the road (Figure 14
in (Dresner and Stone 2008)). Overall, by allowing for much
finer-grained coordination, the simulation-based reservation
system can dramatically reduce per-car delay by two orders
of magnitude in comparison to traffic signals and stop signs.

Improving Throughput of Intersections via
Planning Techniques

FCFS has been shown to be far more efficient than traffic
lights and stop signs. But it is possible to make FCFS even
more efficient by considering how autonomous vehicles can
better utilize the FCFS protocol. In this section, we pro-
pose some planning techniques to improve the motion con-
troller of autonomous vehicles such that the traversal time
of the autonomous vehicles can be shortened and the overall
throughput of the intersection can be increased.

Little’s Law
First of all, let us consider factors that affect the maximum
throughput characteristics of the FCFS protocol. An impor-
tant result in queueing theory is Littles law (Little 1961),
which states that in a queueing system the average arrival
rate of customers λ is equal to the average number of cus-
tomers T in the system divided by the average time W a
customer spends in the system. In the context of intersec-
tion management, Little’s law can be written as L = λW ,
where



• L is the average number of vehicles in the intersection;
• λ is the average arrival rate of the vehicles at the intersec-

tion; and
• W is the average time a vehicle spends in the intersection.
Note that the arrival rate is equal to the throughput of the
system since no vehicle stalls inside an intersection.

Little’s law shows that the maximum throughput (i.e., the
upper bound of λ) an intersection can sustain is equal to the
upper bound of L divided by the lower bound of W , where
the upper bound of L is the maximum number of vehicles
that can coexist in an intersection, and the lower bound of
W is the minimum time a vehicle spends in the intersection.
Thus, Little’s law shows that there are two ways to increase
the maximum throughput: 1) increase the average number
of vehicles in an intersection at any moment of time, and 2)
decrease the average time a vehicle spends in an intersection.

A trivial upper bound on L is the area of the intersec-
tion divided by the average static buffer size of the vehi-
cles. But this bound is rather loose and in practice unachiev-
able. Nonetheless, it provides us some hints that the max-
imum throughput depends on the average static buffer size
of the vehicles. But unfortunately the size of an intersec-
tion is a hard limit and the static buffer sizes cannot be too
small—that is, there is little an intersection manager can do
to squeeze more vehicles into the intersection. Therefore,
we have to consider the second way to increase the maxi-
mum throughput.

Little’s law shows that by reducing the average time
a vehicle takes to traverse an intersection, the maximum
throughput of the intersection can increase. In other words,
a vehicle should maintain a high speed during the traversal
of the intersection to shorten its traversal time. Vehicle’s
velocity in the intersection depends on two factors: 1) the
initial velocity when the vehicle enters the intersection, and
2) the acceleration during the traversal. In the following sec-
tions, we will present two techniques that allow vehicles to
maintain a high speed during the traversal.

Planning for Making Reservations to Avoid
Stopping Before Intersections
One of the keys to entering an intersection at a high speed is
to prevent vehicles from stopping before entering the inter-
section. FCFS, by itself, reduces the number of vehicles that
stop at an intersection, and therefore it allows vehicles to en-
ter an intersection at a high speed most of the time. In fact, it
is one of the main reasons why FCFS is more efficient than
traffic lights and stop signs (Dresner and Stone 2008). While
FCFS has done a good job in this regard, there is still room
for improvement on the autonomous vehicles’ side such that
driver agents can help by preventing themselves from stop-
ping before an intersection.

There are two scenarios in which an autonomous vehicle
has to stop before an intersection in FCFS. First, the vehicle
cannot obtain a reservation from the intersection manager
and is forced to stop before an intersection. This happens
when the traffic level is heavy and most of the future reser-
vation tiles have been reserved by other vehicles in the sys-
tem. Second, the vehicle successfully obtains a reservation
but later determines that it will not arrive at the intersection

at the time and/or velocity specified in the reservation. In
this scenario the vehicle has to cancel the reservations and
those reservation tiles may have been wasted. The effect
of a reservation cancellation is not only that the vehicle in
question has to stop, but also that temporarily holding reser-
vation tiles may have prevented another vehicle from mak-
ing reservation. Both of these effects lead to a reduction in
the maximum throughput of the intersection.

A poor estimation of arrival times and arrival velocities
can lead to the cancellation of reservations. In previous
work, the estimation of arrival times and arrival velocities
is based on a heuristic we called the optimistic/pessimistic
heuristic, that derives the arrival time and arrival velocity
based on a prediction about whether the vehicle can arrive
at the intersection without the intervention of other vehi-
cles (Dresner 2009). However, this heuristic presents no
guarantee that the vehicle can arrive at the intersection at
the estimated arrival time or the estimated arrival velocity;
in fact, experiments have shown that vehicles are often un-
able to reach the intersection at the correct time and cancel
their reservations. To avoid this problem we propose a new
way to estimate the arrival time and arrival velocity. In our
solution when a driver agent estimates its arrival time and
arrival velocity, it also generates a sequence of control sig-
nals. These control signals, if followed correctly, ensure that
the vehicle will arrive at the estimated arrival time and at the
estimated arrival velocity. We can formulate this estimation
problem as the following multiobjective optimization prob-
lem: among all possible sequences of control signals that
control the vehicle to enter an intersection, find one such
that the arrival time is the smallest and the arrival velocity is
the highest.

For an acceleration-based controller, the sequence of con-
trol signals is a time sequence of accelerations stating the ac-
celeration the vehicle should take at every time step. We call
a time sequence of accelerations an acceleration schedule.
Like many multiobjective optimization problems, there is
no single solution that dominates all other solutions in terms
of both arrival time and arrival velocity. Here we choose
arrival velocity as the primary objective, since a higher ar-
rival velocity can allow the vehicle to enter the intersection
at a higher speed. Our optimization procedure involves two
steps: first, determine the highest possible arrival velocity
the vehicle can achieve, and second, among all the accelera-
tion schedules that yield the highest possible arrival velocity,
find the one whose arrival time is the soonest.

We illustrate how the estimation procedure works using
a time-velocity diagram as shown in Figure 3. In this fig-
ure, v1 is the current velocity of the vehicle, t1 is the cur-
rent time, D is the distance from the intersection, amax is
the maximum acceleration, amin is the minimum decelera-
tion, vmax is the speed limit of the road, and vmax

2 is the
speed limit at the intersection. We can see that any function
v(·) in the time-velocity diagram that satisfies the follow-
ing constraints is a feasible velocity schedule for reaching
the intersection, and the derivative of v(·) is an acceleration
schedule for acceleration-based controller. (1) v(t1) = v1;
(2) v(t) ≤ vmax for 0 ≤ t ≤ tend, where tend is the arrival
time; (3) v(tend) ≤ vmax

2 ; (4) amin ≤ d
dtv(t) ≤ amax for



for 0 ≤ t ≤ tend (i.e., the acceleration at any point in time
must be within the limitations); and (5)

∫ tend

t1
v(t) dt = D.

Velocity

Time

v1

v2max

vmax

Area1 Area2 Area3

t2 t3t1 tend
(a) Case 1: Area1 + Area3 ≤ D

Velocity

Time

v1

v2max

vmax

Area4 Area5

vtop

t4t1 tend
(b) Case 2: Area1 + Area3 > D

Figure 3: The time-velocity diagrams for the estimation of
arrival time and arrival velocity

Our objective is to find a function v(·) such that v(tend)
is as high as possible while tend is as small as possible. We
should only consider piecewise linear functions such that
slopes of the line segments can be either amax, amin, or
0, because for any non-piecewise linear function that satis-
fies the constraints, we can always find a piecewise linear
function with a smaller tend and/or a larger v(tend). First of
all, find a point (t2, vmax) in the velocity-time diagram such
that (t2, vmax) is an interception of the line extending from
v1 with slope amax and the horizontal line v = vmax. Let
Area1 be the area of the trapezoid under the line segment
from (t1, v1) to (t2, vmax). Similarly, find an intercepting
point (t3, vmax) by extending vmax

2 with slope amin and
let Area3 be the area of the trapezoid under the line seg-
ment from (tend, v

max
2 ) to (t3, vmax). Note that Area3 does

not depend on the value of tend. If Area1 + Area3 ≤ D,
the vehicle can accelerate to vmax, maintain the speed, and
then decelerate to vmax

2 and reach the intersection (Case
1). Then find d such that d × vmax = D − Area1 +
Area3 = Area2. From this we can compute the accelera-
tion schedule 〈(t1, amax), (t2, 0), (t3, amin)〉 (Figure 3(a)).
If Area1+Area3 > D, the vehicle cannot accelerate to vmax

because its velocity will exceed vmax
2 when it enters the in-

tersection (Case 2). Thus, we need to find a point (t4, vtop)

such that Area4 + Area5 = D and the acceleration sched-
ule is 〈(t1, amax), (t4, amin)〉 (Figure 3(b)). However, there
are cases in which either Area4 > D or Area5 > D and
we cannot find (t4, vtop). In these cases, there is no feasible
acceleration schedule such that the vehicle can arrive at the
intersection while satisfying all the constraints.

We call the driver agent using this optimization proce-
dure a planning-based driver agent, since it plans ahead
of time the acceleration schedule before making reserva-
tions. To evaluate the planning-based driver agent we im-
plemented it in the AIM simulator and conducted an experi-
ment to compare it with the driving agent based on the opti-
mistic/pessimistic heuristic implemented in (Dresner 2009).
In this experiment, the intersection has four incoming lanes
and four outgoing lanes in each of the four canonical direc-
tions. The speed limits of the lanes are set to be 25 m/s. The
static buffer size of the vehicles are set to be 0.25m, which is
sufficient for the simulated vehicles in the simulator. Other
parameters of the autonomous vehicles are: the internal time
buffer is 0s, the edge time buffer is 0.25s, and the maximum
acceleration is 4 m/s. Then we vary the traffic level of each
lane from 0.1 vehicles per second to 0.3 vehicles per sec-
ond, and at each traffic level we run the simulator for one
hour (simulated time) and compute the average delay of the
vehicles. The result is shown in Figure 4. From the figure,
we can see that when the traffic level is below 0.15 vehicles
per seconds, most vehicles can get through the intersection
without stopping (i.e., average delay is almost 0) and there
is little difference between the performance of both driver
agents. However, when the traffic level is more than 0.15 ve-
hicles per seconds, the average delay of our planning-based
driver agents is much lower than the average delay of the
driver agents based on the optimistic/pessimistic heuristic.
When the average delay of the heuristic-based driver agents
levels off at the 0.25 traffic rate (which indicates that the
throughput of the intersection has been saturated), the aver-
age delay of the planning-based driver agents remains low.
Thus the use of our planning-based controller can increase
the maximum throughput of the intersection and reduce the
average delay, and this gives enough motivation to the au-
tonomous vehicles to adopt our planning-based controller.

Planning for Faster Traversal in Intersections
The motion planning technique in the previous section can
effectively prevent autonomous vehicles from unnecessary
stopping before an intersection and in turn increase the ini-
tial velocity of the vehicles when they enter the intersection.
The result is a reduction of the average traversal time and an
increase in the maximum throughput according to the Lit-
tle’s law. Another way to reduce the average traversal time
is to control the acceleration of vehicles inside an intersec-
tion such that the vehicles can pass through the intersection
as quickly as possible.

According to the FCFS protocol, when the intersection
manager grants a reservation to a vehicle, it will send an con-
firmation message to the vehicle. The confirmation message
includes an piece of information called acceleration profile,
which states how the vehicle should adjust its acceleration
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Figure 4: Comparison of the planning-based driver agent
(red dots) with the driver agent based on the opti-
mistic/pessimistic heuristic (purple dots).

during the traversal of the intersection. Formally, an acceler-
ation profile is a list of pairs 〈(a1, t1), (a2, t2), . . . , (an, t2)〉,
such that the vehicle, upon entering the intersection, should
maintain an acceleration of a1 for t2 second, and then an ac-
celeration of a2 for t2 second, and so on. But in the current
implementation of the AIM simulator, an acceleration pro-
file contains at most two pairs, namely 〈(a1, t1), (a2, t2)〉,
where a1 is the maximum acceleration of the vehicles, and
a2 is zero. Hence the vehicles in the simulator accelerates
as much as possible for a certain period of time, and then
maintain the speed when it is ready to leave the intersection.
First of all, let us examine how the maximum acceleration
of a vehicle affects intersection throughput in this setting.

We conducted an experiment using our simulator to see
the change in average delay and throughput as the maximum
acceleration of the vehicle increases. In the experiment, we
again set the traffic level of each lane to be 0.16 vehicles per
second, the speed limit of the roads to be 25 m/s, the static
buffer size to be 0.25m, the internal time buffer to be zero
seconds and the edge time buffer to be 0.25s. The maximum
acceleration of the vehicles is then varied from 0 to 6 m/s2,
with the results shown in Figure 5 and Figure 6. We can
see that as the maximum acceleration increases the average
delay drops to zero quickly and the throughput increases to
a level that is identical to the incoming traffic level.

To see why the throughput can be increased quickly by a
small increase in the maximum acceleration, let us consider
the relationship between the lower bound of the traversal
time and the maximum acceleration. Let v0 be the arrival
(initial) velocity of the vehicle when it enters an intersec-
tion, d is the length of its trajectory in the intersection, v1 be
the velocity when the vehicle leaves the intersection, W be
the time the vehicle spends in the intersection, and a be the
acceleration, assuming that the vehicle accelerates at a con-
stant rate during the entire traversal. If v0 is almost equal
to the maximum velocity of the vehicle and the speed limit
of the road, the acceleration has little effect on the traver-

sal time W ; otherwise, we have W =
√

v2
0+2ad−v0

a by
solving the following two equations: v1 = v0 + aW and

W = (v1 − v0)/a. If v0 is 0, then W =
√

2d√
a

, and the
throughput λ, which is inversely proportional to W , is pro-
portional to

√
a. If v0 is not zero, we can check that λ is

approximately proportional to
√

a. This explains the shape
of the line in Figure 6. If the traffic level is smaller than the
maximum throughput an intersection can sustain, almost all
vehicles can pass through the intersection without stopping,
and it is indeed the case when the maximum acceleration
is larger than 2 m/s2 in Figure 5. In short, the maximum
throughput is approximately proportional to the square root
of the maximum acceleration of vehicles, and we can in-
crease the throughput by increasing the acceleration.
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Figure 5: Maximum acceleration versus average delay.
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Figure 6: Maximum acceleration versus arrival rate.

The above experiment shows that acceleration profiles is-
sued by an intersection manager can have a great impact on
the maximum throughput of an intersection. An interest-
ing question is how to find the best acceleration profile for
vehicles to go through an intersection as quick as possible.
Since the acceleration profile determines the trajectory of the
vehicles, the question becomes how to compute the fastest
trajectory for the vehicle. In the future, we intend to apply
planning techniques to compute acceleration profiles for fast
traversal in intersections.



Reality Check: AIM in Practice
Simulations inevitably will approximate critical aspects of
reality. For example, real cars may not be as precisely
controllable as the simulated cars in simulations, nor may
GPS provide as reliable location estimates. The true test
of the intersection management scheme will be how well
it works in the real-world, with real autonomous vehicles.
In other words, in order to do realistic action planning for
autonomous vehicles at intersections, we need to ground it
with realistic motion planning, and that needs to be verified
in the real world.

Completely testing the AIM system on real hardware
would require a fleet of autonomous vehicles, which is cur-
rently infeasible and potentially unsafe given the risk of col-
lisions during testing. Instead, we take the first step and im-
plement a mixed reality system that will allow us to test the
system using a single autonomous vehicle (Figure 7(a)) and
many virtual (or simulated) vehicles.

Mixed Reality Experiments
To facilitate the mixed reality experiments, modifications
were required to both the AIM simulator and our existing
autonomous vehicle software. While the details of these are
mainly engineering, the key aspect was the addition of proxy
vehicles to the AIM software. A proxy vehicle acts as a gate-
way for a real autonomous vehicle to interact with the sim-
ulated environment. As far as the Intersection Manager and
the FCFS policy are concerned the proxy vehicle is identi-
cal to the virtual vehicles. The difference exists only in the
actual simulation aspect. Instead of the vehicle location be-
ing modelled by motion equations, the location of the proxy
vehicle is now updated via UDP packets containing GPS lo-
cations from a real robot.

In our setup, we ran the AIM software on a computer lo-
cated in the autonomous vehicle. As the autonomous vehi-
cle approaches an intersection, it sends a ”Request Message”
over a specified UDP port to the AIM software. Meanwhile
AIM has been simulating potentially 100’s of other vehi-
cles. AIM will then grant (or reject) a reservation to the
robot based on this ‘virtual traffic’ (Figure 7(b)). Once a
reservation is granted the vehicle will progress through the
intersection in both the real-world and the simulated world. 1

Implementing the Protocol on an Autonomous
Vehicle
Our vehicle has a layered control system with different mod-
ules controlling different aspects of the vehicles movements.
In this section we will present a brief overview of the mod-
ules required to explain the current implementation of the
AIM protocol. The navigator module is a hierarchical state
machine that defines what behavior the vehicle executes. Its
main goal is to plan a path between way-points on a map,
and to create velocity and heading commands that will get
the vehicle to the destination while remaining on the road.

1An example of these experiments can be seen in the
video at http://www.cs.utexas.edu/∼mquinlan/
MixedReality.wmv

(a) Autonomous Test Vehicle (b) Mixed-Reality Simulation

Figure 7: a) The full sized autonomous vehicle used in the
mixed-reality experiments. b) A picture of the AIM simula-
tor running a mixed-reality experiment. The green box (in
the middle of the intersection) is a proxy vehicle that repre-
sents the real world location of the autonomous vehicle. The
while boxes are virtual vehicles with reservations, while the
yellow boxes are virtual vehicles without reservations.

The pilot module takes velocity and heading commands and
determines what throttle, brake and steering actuator move-
ments are required to achieve the desired motion.

There were two important changes made to the vehicles
code. First is the addition of a new module, an Autonomous
Intersection Observer. This observer handles all aspects of
sending and receiving AIM protocol messages with an Inter-
section Manager. The observer also constantly sends a mes-
sage to the simulator that details its current state, i.e., veloc-
ity, acceleration, heading, and position so that AIM can rep-
resent the real vehicle in the simulator. Navigator queries the
observer to discover if the vehicle has been granted a reser-
vation and if so, what velocity, accelerations are required to
go through the intersection safely.

The arrival time to the intersection is calculated as the dis-
tance to the intersection divided by the current velocity. In
addition we have a known arrival velocity of 3 m/s as this
was the stop-approach speed dictated by the DARPA Urban
Challenge rules, which our vehicle is designed to adhere too.

Adjusting AIM Parameters
The initial real-world experiments identified areas in which
the simulation failed to capture the errors present in our au-
tonomous vehicle. In this section, we will discuss how we
modified the AIM parameters to facilitate the safe traversal
of the intersection.

First, the experiments were undertaken on a road with a
legal speed limit of 20 mph, therefore the maximum speed
(Max Speed) of both the autonomous vehicle and the virtual
traffic was set to 7.5 m/s (17 mph).

Second, AIM requires us to define the operating charac-
teristics of the vehicle. Originally we simply transposed the
known vehicle specifications for length, width, acceleration
(0 to 60 mph) and deceleration etc. However it became clear
that AIM interpreted ’max’ to mean ’expected’, which pre-
sented several problems. While our vehicle is technically
capable of accelerating at 2.5 m/s2 if never does, in fact
near intersections our controller rarely exceeds 0.5 m/s2.
Similarly the speed limit is treated as an upper bound by our
controller; the vehicle may drift marginally below this limit



for safety reasons and to facilitate smoother braking when
approaching a stop.

To better understand the true impact of these parameter
modifications we ran simulations to measure the effect on
average delay. Figure 8 plots average delay across a range
of traffic densities, with each color representing a different
set of parameters. You can observe that the default FCFS
parameters 2 result in little delay and in fact the intersec-
tion never becomes congested even at higher traffic rates. In
comparison the parameters that are reflective of the vehicle
in reality result in significant average delay above a traffic
rate of 0.06 vehicles per second per lane.

We then plotted the result of changing a single parameter.
As you can see reducing the Max Speed actually reduced the
average delay. However, the reduction in Max Acceleration
caused a significant increase in average delay. This due each
vehicle taking longer on average to traverse the intersection.

Figure 8: The effect of modifying FCFS parameters for use
with the autonomous vehicle. The green points represent
the default FCFS parameters. The red points are the param-
eters shown to work with our autonomous vehicle. The other
points demonstrate the effect of changing a single parame-
ter, for example ’Reduced Max Acceleration’ is the default
parameter set with Max Acceleration changed from 4.0 m/s2

to 0.5 m/s2.

The remaining three parameters: Static Buffer Size, Inter-
nal Time Buffer and Edge Time Buffer allow us to account
for errors in the vehicles movement. In particular we can
now factor in both GPS error and the velocity controller er-
ror (due to sensor noise and/or road conditions).

Based on preliminary experiments we set the buffers as
follows: Static Buffer Size = 1.0 m, Internal Time Buffer =
2 seconds and Edge Time Buffer = 4 seconds. These values
are set to be large enough to guarantee no accidents, which
is more important than optimizing performance. The effect
of the parameters can again be observed in Figure 8. As ex-
pected increasing any of these buffers does indeed increase
the average delay of a vehicle. Increasing a buffer results

2FCFS default parameters are: Max Speed, Max Accelera-
tion,Static Buffer Size, Internal Time Buffer, Edge Time Buffer =
25.0 , 4.0, 0.25, 0.0, 0.5

in a vehicle reserving a higher percentage of the space-time
tiles available inside the intersection, therefore reducing the
likelihood of another reservation being granted.

Figure 9 shows that even with heavily reduced FCFS per-
formance we still do better then the four-way stop sign cur-
rently in place at our test intersection.

Figure 9: Comparison of the modified vehicle FCFS param-
eters with that of traffic signals and four-way stop signs.

The Effect of Large Buffer Sizes on Average Delay
and Maximum Throughput
The mixed-reality experiments indicate that autonomous ve-
hicles in the real world need a relatively large buffer size in
order to compensate noise and errors in the vehicle’s sensors
and controls. An increase in static buffer size can reduce the
average number of vehicles in intersections at any moment
of time, thus reduce the maximum throughput of an inter-
section according to the Little’s law. To study the effect of
buffer sizes on average delay and maximum throughput, we
ran an experiment with our AIM simulator with an imple-
mentation of FCFS. In the experiment, we set the traffic level
of each lane to be 0.16 vehicles per second, the speed limit
of the roads be 25 m/s, the maximum acceleration of the
vehicles be 4 m/s2, the internal time buffer be zero seconds
and the edge time buffer be 0.25s. We then increased the
size of the static buffers from 0 to 6 meters to observe how it
affects the average delay and the throughput. Figure 10 and
Figure 11 show the results of these experiments.

From these figures, we can see that the average delay of
the vehicles does increases as the static buffer size increases.
Interestingly when the static buffer size is larger than 2 me-
ters, the average delay suddenly increases by a factor of two.
This transition point is due to the fact that a static buffer
larger than 2 meters causes the width of trajectories to be
larger than the width of a lane, and this prevents other ve-
hicles from using the adjacent trajectories. In general, the
average delay increases linearly with the static buffer size,
expect at the transition point. The throughput (i.e., the ar-
rival rate of the vehicles at the intersection), however, de-
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Figure 10: Static buffer size versus average delay.
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Figure 11: Static buffer size versus arrival rate.

creases moderately, because most of the vehicles eventually
enter the intersection even though they have longer delays.

The results of the experiment shows that autonomous ve-
hicles in the real world need a large buffer size, but a larger
buffer size can increase the average delays and reduce the
throughput of an intersection tremendously, causing traffic
congestion. To compensate the effect of the large buffer size,
we need to find ways to increase throughput of an intersec-
tion. The planning-based controller proposed in this paper
can be used to alleviate the negative effects caused by the
large buffer size.

Related Work
Intelligent Transportation Systems (ITS) is a multidisci-
plinary field concerns with advancing modern transporta-
tion systems with information technology (Bishop 2005). A
noticeable research project on ITS is the Berkeley PATH
project, which proposed a fully-automated highway sys-
tem (Alvarez and Horowitz 1997). But most of the exist-
ing work on ITS focus on how to assist human drivers in
the existing transportation infrastructure, and do not assume
vehicles are driven autonomously by computer. Hence,
most of the tools developed by transportation engineering
(e.g., TRANSYT (Robertson 1969) and SCOOT (Hunt et al.

1981)) aim to optimize traffic signals rather than substitute
them with a better mechanism. For intersection manage-
ment, there are many work on the problem of intersection
collision avoidance (Lindner, Kressel, and Kaelberer 2004;
Naumann and Rasche 1997; Rasche et al. 1997; Naumann,
Rasche, and Tacken 1998; Reynolds 1999; USDOT 2003).
But none of these work concerns with autonomous vehi-
cles. Balan and Luke presented a history-based traffic con-
trol (Balan and Luke 2006) that is potentially applicable to
autonomous vehicles. Queueing Theory has been widely
used in traffic analysis (Mannering, Washburn, and Kilareski
2008). Our analysis emphasizes how microscopic control of
autonomous vehicles (via planning techniques) could affect
the throughput of an intersection.

Conclusions and Future Work
The DARPA Urban Challenge in 2007 showed that fully
autonomous vehicles are technologically feasible with cur-
rent intelligent vehicle technology (DARPA 2007). Some
researchers predict that within 5–20 years there will be
autonomous vehicles for sale on the automobile market.
Therefore the time is right to rethink our current trans-
portation infrastructure, which is designed solely for human
drivers. Dresner and Stone proposed to substitute traffic sig-
nals and stop signs for a new intersection control mecha-
nism, namely FCFS, that takes advantages of the capability
of autonomous vehicles, and demonstrated its effectiveness
in simulation (Dresner and Stone 2008). In this paper we
evaluated FCFS in a mixed reality scenario, identified as-
sumptions in the simulation that need relaxing, and deter-
mine FCFS parameters that enable an autonomous vehicle
to traverse an intersection. We explicated the relationship
between the throughput of an intersection and various pa-
rameters of the intersection and vehicles via Little’s law, and
propose planning-based techniques to increase the through-
put of an intersection. These findings allow us to implement
specific improvements to our autonomous vehicle with the
goal of achieving better FCFS performance. In the future,
we intend to expand the mixed reality experiments to include
multiple real autonomous vehicles and evaluate the system
with noisy communications.
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