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Abstract

In exploration of unknown planets, ground vehicles
such as Mars rovers may not know exactly what ter-
rain they will run into, causing great difficulty in meet-
ing their goals. This paper presents a two-stage ap-
proach for motion planning in uncertain terrains. In the
first stage, we utilize a specialized planner to gener-
ate motion plans to meet some arrival requirements. In
the second stage, we augment the motion plans with
sensing information and combine them to form a full-
fledged controller in order to cope with uncertainty in
the environment. This separation of planning and un-
certainty management can simplify the development of
planners for complicated goals. Our preliminary exper-
iments showed that a vehicle can meet the arrival re-
quirements with a high probability in small random
graphs.

Introduction
Our next frontier of space exploration is near earth objects
such as Mars and comets. Currently, we rely on robot rovers
to explore these extraterrestrial lands. However, without full
knowledge of the environment on these lands, it is hard to
generate motion plans for these rovers to achieve their objec-
tives. For example, if the vehicle in Figure 1 can only detect
the paths within its sensors’ range (the orange pie shape),
how can it arrive at the destination without knowing entire
graph of feasible paths? In this paper, we focus on planning
to move a vehicle or a rover to its destination in order to meet
certain requirements at the destination, under the condition
that the terrain on its way is uncertain.

There have been many works on motion planning under
uncertainty in robotics (e.g., (Rekleitis, Meger, and Dudek
2006; Nakhaei and Lamiraux 2008; Um et al. 2013)), but
few of them considered complex arrival requirements. Some
variants of the popular probabilistic planning methods such
as probabilistic roadmap (PRM) (Missiuro and Roy 2006;
Kneebone and Dearden 2009) and rapidly-exploring ran-
dom trees (Melchior and Simmons 2007; Maeda, Singh, and
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Figure 1: A rover traverses an unknown 3D-terrain to reach
the destination. The roads on the terrain are modeled as a
directed acyclic graph. The orange pie shape is the sensor’s
range.
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Figure 2: The cross-section of the terrain along the bold path
in Figure 1.

Durrant-Whyte 2011; Nikitenko et al. 2013) can be used to
generate motion plans in uncertain environments. However,
their underlying heuristics provide no guarantee of success.
While the framework of POMDPs (e.g., (Ong et al. 2010))
is rich enough to encode planning problems under uncer-
tainty with arbitrary utility functions, some goal conditions
can be too complicated for general-purpose POMDP solvers
to handle. In fact, without using specialized planners it is
hard to satisfy certain goal conditions. We therefore pro-
pose a two-stage approach for motion planning under un-
certainty: First, use an efficient planner to generate motion
plans that meet the arrival requirements in uncertainty-free
environments. Second, combine the solution plans generated
by the planner to form a controller that can work in uncertain
environments. Our approach is inspired by the work on the
synthesis of strategies from interaction traces in (Au, Kraus,
and Nau 2008), which outlined the foundation of our ap-
proach: by augmenting motion plans with simulated sensing



information in some possible worlds, these motion plans can
be combined to form a full-fleged controller that will meet
the arrival requirements in these possible worlds. The sepa-
ration of the planning and uncertainty management is a key
advantage of our approach.

This paper is organized as follows. First, we define the
motion planning problem in uncertain terrains. Second, we
discuss how to combine the motion plans to cope with un-
certain terrains. Our algorithm will then be evaluated exper-
imentally with small random graphs, and the preliminary
results will be presented. Finally, we go over some related
work and summarize our contributions.

Problem Definition
We assume the terrain has a fixed set of roads, and off-road
riding is not allowed. The road network can be modeled as a
directed acyclic graph as shown in Figure 1, so that each
road corresponds to an edge in the graph. The terrain is
3-dimensional, meaning that each road can have different
slopes (see Figure 2). We assume that the homogeneity as-
sumption hold in individual roads (i.e., the road condition
would not change when the vehicle traverses the road). If a
road does not satisfy the homogeneity assumption, we will
model it as a sequence of edges in the graph such that each
edge satisfies the homogeneity assumption.

As in (Au, Quinlan, and Stone 2012), we consider au-
tonomous vehicles that are controlled by PID-controllers or
other non-linear controllers whose control signals are set-
points, which are the target velocities for the vehicle. After
setting a new setpoint v̂, the velocity will not change to v̂
immediately; instead it takes a while for the vehicle to set-
tle down at v̂. For planning purposes, it is essential to know
how long the vehicle takes to settle at v̂. We therefore rely on
a performance model (T stable,Dstable), which conservatively
measures the time and distance the vehicle takes to settle at
v̂ after changing the setpoint. More precisely, the stable time
T stable(v, v̂) is the maximum time the vehicle takes to stabi-
lize at v̂, and the stable distance Dstable(v, v̂) is the average
distance the vehicle travels for a period of time T stable(v, v̂)
after changing the setpoint. Performance models are subject
to the road condition, and therefore they can be different
on different roads. Assume that we have already obtained
the performance model of every road, using the estimation
method in (Au, Quinlan, and Stone 2012).

In longitudinal control, a vehicle moves along a road ac-
cording to a time-dependent velocity function v̂(·) called
setpoint schedule, where v̂(t) is the setpoint for the vehicle
at time t. (Au, Quinlan, and Stone 2012) has discussed at
length how to generate a setpoint schedule to control a vehi-
cle to arrive at a specific position on an one-dimensional path
at a given arrival time and velocity. But this notion of mo-
tion plans is not sufficient for the traversal of a graph since
a vehicle also needs to decide which outgoing edges the ve-
hicle should choose when it reaches a node. We therefore
extend the notion of setpoint schedules to include control
signals which decide which path the vehicle should take in a
directed graph.

Consider a vehicle traversing a directed acyclic graph
G = (N,E), following a path starting at node n0 and end-

ing at node nend (nend is called the destination). Suppose
the vehicle moves along the path using a setpoint sched-
ule v̂(·). In this paper, we assume the controller can act at
discrete time points only. Hence, v̂(·) can be represented
as a sequence of pairs 〈(t0,v0),(t1,v1), . . . ,(tn,vn)〉, which
means that the vehicle should choose the setpoint vi at
time ti, for 0 ≤ i ≤ n. We augment the setpoint schedule
with information about which outgoing edges the vehicle
should choose at each node as follows: a motion plan is
〈(t0,a0),(t1,a1), . . . ,(tn,an)〉, where ai = 〈vi,ei〉 is the con-
trol signals called an action at time ti. An action ai is a vector
with two components: 〈vi,ei〉, where 1) vi is the setpoint at
time ti, and 2) ei is one of the outgoing edges of the node at
which the vehicle is located at time ti. If the vehicle is not
located at a node at time ti or the node it locates at time ti
has no outgoing edges, ei = nil.

Given a graph G = (N,E), a starting time t0, and a start-
ing velocity v0 at n0, our goal is to generate a motion plan
π such that the vehicle will reach the destination nend while
satisfying a goal condition G . This motion plan is, of course,
subject to the speed limit vmax as well as physical con-
straints of the vehicle as described in the performance model
(T stable

e ,Dstable
e ) of each edge e ∈ E. Formally, we define our

problem as follows. A validation problem Pvalid is a 4-tuple
〈(t0,v0),Γ,vmax,G 〉, where

• (t0,v0) is the initial configuration;
• Γ = (G,{(De,T stable

e ,Dstable
e )}e∈E) is the specification of

the graph G = (N,E), where De is the length of the edge
e ∈ E, T stable

e is the stable time function of e, and Dstable
e

is the stable distance function of e;
• vmax is the speed limit of all edges; and
• G is the goal condition.

We use the velocity function v(·) to denote the velocity of
the vehicle over time. We say v(·) is constructible if there
exists a setpoint schedule v̂(·) such that the velocity function
is v(·) if the vehicle follows v̂(·). Let ρ = 〈e1,e2, . . . ,em〉 be
a path in G connecting n0 to nend. A velocity function v(·) is
feasible for a path ρ if it satisfies the following constraints:

C1) v(t0) = v(0) = v0;
C2) 0≤ v(t)≤ vmax for 0≤ t ≤ tend, where tend is the arrival

time (i.e., the velocity cannot exceed the speed limit or
be negative at any time);

C3)
∫ tei+1

tei
v(t)dt = Dei for all edge ei on ρ , where tei is the

time the vehicle reaches ei according to v(·) along ρ

and tem+1 = tend (i.e., the distance traveled on an edge ei
must be equal to the length Di of ei);

C4) v(·) is constructible; and
C5) G is true.

A setpoint schedule v̂(·) is feasible for a path ρ if the ve-
locity function constructed by v̂(·) is feasible for ρ . A mo-
tion plan (say π = 〈(ti,〈vi,ei〉)〉i=0..n) is feasible if the corre-
sponding setpoint schedule (〈(ti,vi)〉i=0..n) is feasible for the
corresponding path (〈ei : 0 ≤ 0 ≤ n and ei 6= nil〉). The ob-
jective of Pvalid is to decide whether a feasible motion plan
exists. Notice that Pvalid has not yet taken uncertainty into
account.



Motion Planning in Uncertain Terrains
This section concerns with situations in which the terrain is
not fully observable. At the beginning, the vehicle knows
nothing about the terrain beyond the range of its sensors, ex-
cept the location of the destination nend. Suppose the vehicle
starts with a belief about the set G of possible graphs. The
belief is defined in terms of a probability distribution P over
G, which means that the probability that a possible graph
G ∈ G is the real graph is P(G). As the vehicle traverses
the graph, it gathers more and more information about the
terrain over time. This information will be helpful for the
vehicle to ascertain which graph in G is real.

Let G = {G1,G2, . . . ,GmG} where Gi = (Ni,Ei) for 1 ≤
i≤mG. Some of the nodes and edges are shared by multiple
graphs in G. Let Ns =

⋃
1≤i≤mG

{Ni} and Es =
⋃

1≤i≤mG
{Ei}.

The union of all graphs in G forms a supergraph Gs =
(Ns,Es). Consider the 2D rectangular region R that physi-
cally contains Gs. We subdivide the region into a lx× ly grid
as shown in Figure 1. Each cell in the grid will generate a
signal when the sensors on the vehicle gather information
about the cell. The signal of a cell reflects some features of
the terrain at the cell (e.g., landmarks). From the sensors’
viewpoint, a terrain is a mapping T : [1 . . . lx]× [1 . . . ly]→ S,
which specifies the signals at all cells in R, where S is the
set of all possible signals. Each possible graph Gi ∈G is as-
sociated with a terrain Ti. Suppose the real graph is Gi. At
the beginning, the vehicle has only partial knowledge of Ti.
The vehicle will use its sensors to gather more information
about Ti during traversal. We will make use of the mono-
tonicity assumption: Any new knowledge from sensors will
not contradict the existing ones.

Suppose the vehicle follows a feasible motion plan π =
〈(t0,a0),(t1,a1), . . . ,(tn,an)〉, where ai = 〈vi,ei〉. We assume
sensing actions interleave with the execution of actions: Be-
fore the execution of an action ai at time ti, the vehicle ob-
tains a percept bi from the environment. We define an aug-
mented motion plan as τ = 〈(a1,b1),(a2,b2), . . .(ak,bk)〉,
which is basically an interaction trace between the vehicle
and the environment. Now we make use of the results in (Au,
Kraus, and Nau 2008), which states that a set of interaction
traces, under certain conditions, can be combined to form
an agent that will succeed in environments in which the in-
teraction traces are generated. Furthermore, if we carefully
select the interaction traces, we can increase the probabil-
ity that the agent will succeed in an uncertain environment.
Algorithm 1 is the architecture of the vehicle’s controller
that makes use of augmented motion plans. In Algorithm 1.
actioni(τ) and percepti(τ) be the i’th action and the i’th per-
cept of τ , respectively.

According to (Au, Kraus, and Nau 2008), the interaction
traces can be combined to form a composite agent if they are
mutually compatible. In the same vein, we define the com-
patibility of augmented motion plans as follows.
Definition 1 Let lcp(αa,αb) be the longest common pre-
fix of two finite sequences αa = 〈ca

1,c
a
2, . . . ,c

a
ka
〉 and αb =

〈cb
1,c

b
2, . . . ,c

b
kb
〉, such that lcp(αa,αb) = 〈c1,c2, . . .ck〉 where

ci = ca
i = cb

i for 1 ≤ i ≤ k and either (1) k = ka < kb, (2)

Algorithm 1 The architecture of the vehicle’s controller.
1: procedure VEHICLECONTROLLER(T )
2: i := 1; Ti := T
3: while the vehicle has not reached nend do
4: if the current time is ti then
5: Obtain a percept bi from sensors.
6: Ti+1 := /0
7: for all τ ∈Ti do
8: if bi = percepti(τ) then
9: Ti+1 := Ti+1∪{τ}

10: Ai := {actioni(τ) : ∀τ ∈Ti+1}
11: if |Ai| 6= 1 then
12: Return Fail since T is not compatible.
13: Let the unique action in Ai be 〈vi,ei〉
14: if ei 6= nil then steer the vehicle to edge ei.
15: Change the current setpoint to vi
16: i := i+1

k = kb < ka, or (3) ca
k+1 6= cb

k+1.

Definition 2 Two augmented motion plans τ1 and τ2 are
compatible if and only if |lcp(action(τ1),action(τ2))| >
|lcp(percept(τ1),percept(τ2))|, where action(〈(ai,bi)〉i..k)
= 〈ai〉i=1..ka and percept(〈(ai,bi)〉i..k) = 〈bi〉i=1..kb .

Definition 3 A set T of augmented motion plans is compa-
tiable if and only if every pair of augmented motion plans in
T is compatiable.

Theorem 1 states that if the input T of Algorithm 1 is com-
patible, the algorithm will never return Fail from Line 12.
The proof of the theorem is similar to the proof in Theo-
rem 2 in (Au, Kraus, and Nau 2008).

Theorem 1 Algorithm 1 will not fail if 1) T is compatible,
and 2) one of the augmented motion plans in T is generated
by the real graph.

Theorem 1 implies that if we can find a compatible set
T of feasible augmented motion plans, Algorithm 1 will
always be able to reach its destination while satisfying the
goal condition, as long as the real graph is one of the graphs
in which some feasible augmented motion plans in T are
generated. Of course, we assume that the underlying planner
for the validation problem can generate motion plans that
satisfy the goal condition. For instance, if we concern with
arriving at the destination at a specific time and at a specific
velocity, the algorithms presented in (Au, Kraus, and Nau
2008) will work.

The probability of success of Algorithm 1 is equal to
∑τi∈T {P(Gi)}, where τi is a feasible augmented motion
plan generated in Gi. As can be seen, if T includes one
augmented motion plan in every G ∈ G, the probability of
success is 1—the vehicle can guarantee to arrive at the desti-
nation in uncertain terrains. However, not every pair of aug-
mented motion plans is compatible. In fact, there can be two
possible graphs whose sets of all feasible augmented mo-
tion plans are disjoint, meaning that it is impossible to have
a 100% successful rate. In these uncertain terrains, we can
only hope to maximize the probability of success by finding



Algorithm 2 The greedy selection of compatible augmented
motion plans.

1: procedure FINDCOMPATIABLEPLANS(G)
2: T := /0
3: for Gi ∈G in descending order of P(Gi) do
4: for j = 1 to K do
5: Randomly generate a motion plan π in Gi
6: Simulate percepts as vehicle follows π in Gi
7: Let τ be the augmented motion plan of π .
8: if τ is compatible with all τ ′ ∈T then
9: T := T ∪{τ}; Break

return T

a large T that covers as many possible graphs as possible.
Hence, we present a greedy algorithm to find such T . The
algorithm, as shown in Algorithm 2, considers the possible
graph in the descending order of probability, and then ran-
domly generates K augmented motion plans in these graphs.
The augmented motion plan will be added to T as long as
it is compatible with all plans in T . Although the algorithm
cannot guarantee to find T that maximizes the probability
of success, it can often find a good set of augmented mo-
tion plans with a high probability of success, as shown in
the experimental results in the next section.

Preliminary Experimental Results
To evaluate Algorithm 1 and Algorithm 2, we conducted a
simulation experiment with four different random graphs.
One of the random graphs is shown in Figure 3. First, a di-
rected acyclic graph Gs that connects n0 to nend was gen-
erated by randomly connecting a fixed number of nodes
(Graph a). Gs has to be solvable (i.e, there exist paths con-
necting n0 to nend). Second, we randomly chose the road
condition T stable and Dstable for each edge, and assigned
landmarks to each of the edges, such that the landmarks on
two different edges are different. Third, we randomly re-
moved some edges in Gs to form graphs (Graph b-e). The
landmarks on the removed edges were removed too. We re-
peated the removal of edges from Gs four times to generate
a set G of four possible graphs.

After generating G, we set the starting time t0 = 0s and
the starting velocity v0 = 0m/s. Our goal G is to reach nend

at time tend = 100s and vend = 40m/s. We devised a motion
planning algorithm to generate one augmented motion plan
for each possible graph. Then we randomly assigned a prob-
ability distribution P over G, and ran Algorithm 2 to find a
set T ′ of compatible augmented motion plans. We ran Algo-
rithm 1 with T ′ 100 times and measured the probability of
success. We repeated the measurement 6 times with differ-
ent probability distributions. The successful rates and their
95% confidence intervals are shown in Table 1.

As can be seen, the success rate of our approach is often
higher than 90%, with an overall successful rate of 97.4%
While different probability distributions of G produce sim-
ilar successful rates, the successful rates heavily depend on
the topology of the original supergraph Gs. In Gs

2, the suc-
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Figure 3: Graph a is Gs, and Graph b-e are the possible
graphs.

Table 1: The successful rates of Algorithm 2.
Graph Gs

1

Prob. Distribution Success Rate
(0.5,0.2,0.1,0.2) 94.1%±5.2
(0.4,0.3,0.2,0.1) 95.1%±3.1
(0.2,0.1,0.3,0.4) 93.2%±3.6
(0.1,0.5,0.2,0.2) 90.0%±3.7
(0.2,0.1,0.4,0.3) 90.3%±2.8
(0.3,0.3,0.1,0.3) 89.6%±2.2

Graph Gs
2

Prob. Distribution Success Rate
(0.5,0.2,0.1,0.2) 100%±0
(0.4,0.3,0.2,0.1) 100%±0
(0.2,0.1,0.3,0.4) 100%±0
(0.1,0.5,0.2,0.2) 100%±0
(0.2,0.1,0.4,0.3) 100%±0
(0.3,0.3,0.1,0.3) 100%±0

Graph Gs
3

Prob. Distribution Success Rate
(0.5,0.2,0.1,0.2) 98.6%±2.3
(0.4,0.3,0.2,0.1) 99.1%±1.3
(0.2,0.1,0.3,0.4) 99.4%±0.8
(0.1,0.5,0.2,0.2) 99.5%±0.7
(0.2,0.1,0.4,0.3) 99.3%±0.7
(0.3,0.3,0.1,0.3) 98.3%±1.0

Graph Gs
4

Prob. Distribution Success Rate
(0.5,0.2,0.1,0.2) 100.0%±0.0
(0.4,0.3,0.2,0.1) 99.1%±0.4
(0.2,0.1,0.3,0.4) 99.5%±0.7
(0.1,0.5,0.2,0.2) 99.5%±0.6
(0.2,0.1,0.4,0.3) 99.8%±0.4
(0.3,0.3,0.1,0.3) 99.0%±0.5

cessful rates are 100%, meaning that the augmented motion
plans of the possible graphs are highly compatible.

Related Work
Probabilistic roadmap methods (PRM) (Kavaki et al. 1996)
and rapidly-exploring random trees (LaValle and James
J. Kuffner 2000) are both widely used, sampling-based al-
gorithms. These algorithms are incomplete, but some exten-
sions have been made to turn them into complete algorithms.
Hirsch and Halperin (2004) and Zhang et al. (2007) pro-
posed a hybrid motion planner that generates complete so-
lutions with PRM. Nonetheless, these modified algorithms
will suffer from inefficiency due to their completeness, and
the arrival requirement has to be quite simple (e.g., arrive at
a position without time and velocity requirement). While in-
terleaving planning and execution is a good strategy to deal
with uncertainty in planning (e.g., (Pivtoraiko, Mellinger,
and Kumar 2013)), replanning cannot correct wrong deci-
sions in previous steps, thus it is hard to provide any arrival
guarantees.

TPOPEXEC (Muise, Beck, and McIlraith 2013) intro-
duces a two-stage approach for planning: First, an offline
preprocessor takes a partial-order plan and a set of temporal



constraints to produce a generalized representation. Second,
an online component called EXECUTOR selects a tempo-
rally consistent, valid plan fragment from the generalized
plan. Choset et al. (2000) presented a sensor-based motion
planning approach based on a roadmap called hierarchical
generalized Voronoi graph (HGVG), which can be incre-
mentally constructed using only line-of-sight sensor data.
This approach guarantees that the robot can find a path from
start to goal or report that such a path is not feasible. Luna
et al. (2014) introduces a two-stage framework for efficient
computation of an optimal control policy in the presence of
uncertainty. It first generates a bounded-parameter Markov
decision process (BMDP) over a discretization of the en-
vironment and then quickly selects a local policy within
each region to optimize a continuously valued reward func-
tion online. As the sensors gather more information about
the environment, the BMDP is updated accordingly and the
global control policy is recomputed. However, none of the
above approaches concern with arrival requirements other
than reaching the destination.

Concluding Remarks
In this paper, we proposed a two-stage approach for mo-
tion planning in uncertain terrains. More specifically, we
proposed to augment motion plans with sensing informa-
tion and then combine them, in a greedy manner, to form
a controller that can handle uncertainty in the environment.
This separation of planning and uncertainty management
can greatly simplify our task, as we can utilize existing fast
planners to generate motion plans that satisfy the goal condi-
tions. In space exploration applications, the goal conditions
can be quite specific. Instead of modifying existing plan-
ning algorithms for these applications to deal with uncer-
tain terrains, we propose to adopt them directly and combine
their solutions to form a contingency controller. If there are
enough augmented motion plans, the controller can achieve
a high success rate.

Our approach has two drawbacks. First, the number of
contingencies can be quite large in an uncertain environ-
ment, meaning that we may need a lot of augmented mo-
tion plans in order to deal with all these contingencies. How-
ever, we believe that in some environments, a small number
of augmented motion plans is sufficient because one aug-
mented motion plan can deal with several different contin-
gencies in different possible graphs. We intend to evaluate
this possibility in the future. Second, we usually do not know
the set of all possible graphs in G ahead of time, thus some
possible graphs are not considered by Algorithm 2. As dis-
cussed in (Au, Kraus, and Nau 2008), we can use a backup
planner to handle these unknown cases. In the future, we in-
tend to improve our algorithms to address these issues.
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