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Abstract— A conveyor belt is an efficient mode of transporta-
tion and has been widely utilized to move large quantities of
objects in assembly lines, airports, etc. We propose a new con-
veyor system called mobile conveyor lines that can autonomously
configure itself to move objects to a given destination. This
system is suitable for situations such as disaster areas in
which it is difficult to set up a conveyor line manually. We
analyze the reachability of a group of mobile conveyor belts
and propose an algorithm to check the reachability of a given
destination, as well as a method to generate a configuration
to guide conveyor belts to connect themselves to reach the
destination. Our experimental results show that our algorithms,
together with a heuristic that biases the search towards the
destination, can quickly generate configurations of conveyor
belts for problems that require less than 20 conveyor belts.

I. INTRODUCTION

Many interesting tasks for mobile robots involve moving
objects from one location to another. However, the design
of existing mobile robots is not the best for moving a large
number of objects as efficiently as possible. For example, the
robots in the DARPA Robotics Challenge have limited ability
to carry or transport a payload; they would have to make
many round trips in order to move all objects out of a disaster
zone in a rescue mission. While a robot with a high payload
capacity can finish the task in a shorter amount of time, it
makes more sense to deploy conveyor belts to help robots
moving the objects. Conveyor technology, which has been
widely used to move materials along manufacturing assembly
lines or as a mode of transportation (e.g., escalators), could
play a big part in high throughput robotic systems.

Today most conveyor belts are used in a stationary posi-
tion in indoor environments (e.g., assembly lines). Few are
designated as portable conveyor belts that can be deployed
at outdoor locations by human workers. One example is
Miniveyors’ portable conveyors as shown in Fig. 2. These
lightweight conveyor systems allow quick and efficient trans-
portation for a wide variety of materials, making them a good
companion for robots in rescue missions. However, these
conveyor belts still require humans to setup, making them
difficult to be deployed in extreme environments such as dis-
aster areas. We therefore propose to consider conveyor belts
as robots and study conveyor belts with its own mobility.
We call these robots mobile conveyor belts. In this paper, we
present a mobile conveyor belt that is an ordinary conveyor
belt attached to a mobile platform (see Fig. 1), and study
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Fig. 1: A mobile conveyor belt.

Fig. 2: A number of Miniveyors forms a conveyor line by
stacking their endpoints on top of another’s.

how to make a number of these robots configure themselves
autonomously without human intervention.

One challenge for our mobile conveyor system is how
to connect several mobile conveyor belts together to form
a conveyor line that transfers objects from one location to
a given destination. Some destinations simply cannot be
reached no matter how the conveyor belts are connected to-
gether. Moreover, as the number of conveyor belts increases,
the number of possible ways to connect them grow exponen-
tially, causing difficulty in computing the right configurations
to form a conveyor line. To resolve these issues,
• we give a complete set of equations to describe the set

of positions that can be reached by one mobile conveyor
belt given its physical constraints;

• we present a probabilistic algorithm to check whether
it is possible to use at most N mobile conveyor belts to
connect a position to a destination on a flat surface;

• we describe an approach to generate a correct configura-
tion for all conveyor belts if the probabilistic algorithm
shows that such configuration exists; and

• we propose a heuristic to increase the chance for the
algorithms to find a solution in 3D environments.

This paper is organized as follows. After presenting the re-
lated work in Section II, we define our problem in Section III
and analyze the reachability of a conveyor belt in Section IV
and Section V. Then we give a configuration generation
algorithm in Section VI and present the experimental results
in Section VII, before we conclude in Section VIII.



II. RELATED WORK

Since robots typically cannot move items in large volumes,
we consider incorporating some capabilities of robots into
conveyor systems so that the robotic conveyor systems can be
used in situations that no other robots can handle. There are
few works concerning the configuration of conveyor systems
as a whole. Instead, the majority of these works are about
the improvement of mechanical design. Li and Li [1] used
AMESIM, a hardware modeling software, to evaluate the
performance of a conveyor belt and found that the addition
of flywheels to motors can greatly improve the performance.
Pitcher [2] discussed the loss of strength in three main
types of joints between conveyor belts, and found that these
joint design cannot perform at their full potential. Donis [3]
studied the problem of how to make optimal choice of the
locations of the belt weighter while taking the belt stiffness
into account. Nuttall [4] studied the design of multiple driven
belt conveyors, as well as distributed drive power and tension
control, so as to strike a balance between locally applied
drive power and the resulting resistances. Bindzar et al. [5]
presented a 3D mathematical model of conveyor belt which is
used to study its performance when subject to stress loading.

When conveyors are joined, they form a kinematic
chain similar to a snake-like robot, which is a type of
hyper-redundant manipulation whose configuration problem
is mainly about finding collision-free configuration-space
paths [14]. Our mobile conveyor line is similar to Job
flexible conveyor train, a continuous haulage system for
mining applications.1 These systems are more flexible than
mobile conveyor lines we consider here, but their automatic
configuration problems are also more complicated.

There are many works on the simulation of conveyor
systems. McNearny and Nie [9] and Mankge [10] presented
a simulation of underground conveyor system for mining.
In particular, Mankge [10] used his simulation to study
constraint management of the conveyor haulage systems.
Ananth et al. [11] presented a design of a conveyor system
that takes belt speed, belt width, motors, pulley, gear box
selection, etc., into account. Hou and Meng [12] modeled
the dynamic characteristics of a belt conveyor affected by
the material of the belt, and observed that the stress wave
propagation speed increases with the tensile load. Likewise,
Karolewski and Ligocki [13] devised a mathematical model
of long belt conveyors that includes phenomena such as the
tape’s wave behavior and various operating states of the belt.

Energy saving is also a major concern in the design of
conveyor systems. Zhang and Xia [6] optimized the energy
efficiency of belt conveyors by adjusting operational parame-
ters. Lauhoff [7] critically examined a recommendation about
the speed of belt conveyors for energy-saving and found that
traditional filling levels is inappropriate. Fonseca et al.[8]
proposed an expert system approach to conveyor selection
to help making conveyor equipment selection, and showed
that it outperformed human experts.

1http://www.joyglobal.com/product-details/
flexible-conveyor-train
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Fig. 3: The design of a mobile conveyor belt.

III. CONFIGURATIONS OF MOBILE CONVEYOR LINES

A conveyor belt is a machine that carries a continuous se-
quence of objects from one location to another. We attached
a conveyor belt to a mobile platform as shown in Fig. 3.
The mobile platform connects to the center of the conveyor
belt via a strut with adjustable length. At the intersection of
the strut and the conveyor belt is a servo motor that controls
the slope of the conveyor belt. Let L be the length of the
conveyor belt, h be the height of the center of the conveyor
belt from the ground, and θ be the pitch angle between
the conveyor belt and the horizontal plane. Our mobile
conveyor belt is height-adjustable and pitch-adjustable, with
a minimum height Hmin, a maximum height Hmax, and a
maximum pitch angle Θmax (i.e., Hmin ≤ h ≤ Hmax and
−Θmax≤ θ ≤Θmax). The maximum pitch angle are the same
in both clockwise and counterclockwise directions, but the
length of a conveyor belt is not adjustable.

A mobile conveyor line consists of n mobile conveyor
belts linking together at their endpoints to form a chain
of conveyor belts. To simplify analysis, we only consider
mobile conveyor lines in which all mobile conveyor belts are
identical; hence L, Hmin, Hmax, and Θmax are the same for all
mobile conveyor belts. Let Dmin and Dmax be the minimum
and maximum vertical distances between the endpoints of
two consecutive belts, respectively. If there is a mechanism
to physically connect the endpoints of two conveyor belts,
we set Dmin = Dmax = 0; otherwise, we can stack one end
point of a conveyor belt on top of the end point of another
conveyor belt, as shown in Fig .2. In the latter case, Dmax

is the maximum dropping distance the objects can sustain,
and Dmin > 0 because there is a gap between the endpoints
of the two conveyor belts.

Let τ1, τ2, . . . , τN be N mobile conveyor belts that
are put on a flat surface. Let (xi,yi) be the coordinate of
the center of τi, and φi be the heading of the τi. Here
the heading of the mobile platform is the same as the
heading of the conveyor belt since our conveyor belt cannot
rotate relative to the mobile belt. Let hi and θi be the
height and the pitch angle of τi as depicted in Fig. 3. A
configuration of τi is a 5-tuple (xi,yi,φi,hi,θi). Then the
coordinate of the starting point of τi is (xstart

i ,ystart
i ,zstart

i ) =
(xi − (L/2)cos(θi)cos(φi),yi − (L/2)cos(θi)sin(φi),hi −
(L/2)sin(θi)), and the coordinate of the end point of
τi is (xend

i ,yend
i ,zend

i ) = (xi + (L/2)cos(θi)cos(φi),yi +
(L/2)cos(θi)sin(φi),hi +(L/2)sin(θi)).

Objects enter the scene from an entry point, which has



the coordinate pentry = (xentry,yentry,zentry), where zentry ≥ 0.
Given N mobile conveyor belts, our goal is to connect n
conveyor belts to form a conveyor line that moves objects
entering from the entry point to an exit point pexit =
(xexit,yexit,zexit), where zexit ≥ 0 and 0 ≤ n ≤ N. In other
words, our objective is to compute a set of configurations
〈(xi,yi,φi,hi,θi)〉i=1..n for n mobile conveyor belts that satis-
fies the following constraints:
C1) xend

i = xstart
i+1 and yend

i = ystart
i+1 for 1≤ i < n;

C2) xstart
1 = xentry, ystart

1 = yentry, xend
n = xexit, and yend

n = yexit;
C3) Dmin ≤ zend

i − zstart
i+1 ≤ Dmax for 1≤ i < n;

C4) Dmin ≤ zentry − zstart
1 ≤ Dmax and Dmin ≤ zend

n − zexit ≤
Dmax;

C5) Hmin ≤ hi ≤Hmax and −Θmax ≤ θi ≤Θmax for 1≤ i≤ n;
and

C6) zstart
i ≥ 0 and zend

i ≥ 0 for 1≤ i≤ n.

IV. REACHABILITY ANALYSIS

Due to its physical constraints, a mobile conveyor belt
can connect a starting point to a subset of end points in the
workspace only. We say these end points are feasible. Given
a starting point pstart, let F be the set of all feasible end
points. The reachable set R of the conveyor belt is the set
of points below F such that each point satisfies the dropping
distance constraint, i.e., R = {(x,y,z′) : z−Dmax ≤ z′ ≤ z−
Dmin,(x,y,z) ∈ F}. If a point p is not in R, it means that it
is impossible to configure a conveyor belt to move an object
from pstart to some end point pend and then drop the object
to p. As we will see in Section VI, computing the reachable
set given a starting point can help to determine if a certain
configuration of a conveyor line is feasible. In this section,
we will give a complete set of equations to describe the
reachable set of one conveyor belt only.

To simplify our discussion, we begin by considering the
2D reachable set on the x-z plane by setting y= 0 and φ = 0.
We can easily extend this 2D reachable set to 3D by rotating
the 2D reachable set along the vertical line passing through
the starting point of the conveyor belt—then we get a toroidal
region which is the reachable set of the conveyor belt in 3D.
Without loss of generality, suppose the starting point of the
conveyor belt is fixed at (0,0,zstart). The following equation
defines the reachable set in terms of θ :

R′(θ) = {(x,0,z) : x = Lcos(θ),zstart +Lsin(θ)−Dmax

≤ z≤ zstart +Lsin(θ)−Dmin,z≥ 0}
(1)

This reachable set is a vertical line segment whose position
and length depend on the value of θ . Let θ ∈ [θa, θb] be
the valid range of θ such that the conveyor belt satisfies all
physical constraints. The reachable set is then

R =
⋃

θa≤θ≤θb

R′(θ) (2)

The valid range of θ depends on the values of Hmin, Hmax,
Θmax, L, and zstart. Fig. 4 lists the six cases in which the
set of the valid range of θ differs. In this figure, ∆max =
(L/2)sin(Θmax) is the maximum vertical distance between
the starting point and the center of the belt. In essence, the
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(f) Case 6: Hmin ≤ ∆max and
Hmin ≤ Hmax ≤ ∆max

Fig. 4: The six cases in which the set of valid ranges of θ

in Table I differs.

six cases show how Hmin, Hmax, Θmax, and L relate to each
other. The range of θ in each case depends on the value
of zstart as shown in Table I. Some constants in Table I are
defined in Table II.

To see why the cases in Table I are exhaustive, we need to
understand how we identify the six cases in Fig. 4. In Case 1
and Case 2, Hmin is large enough so that the conveyor belt
cannot touch the ground. The red lines represent the conveyor
belt when h = Hmax at the minimum and maximum pitch
angles; Point A and Point B are the starting points of the
belt at the minimum and maximum pitch angles, respectively.
Likewise, the blue lines represent the conveyor belt when h=
Hmin at the minimum and maximum pitch angles, whereas
Point C and Point D are the corresponding starting points.
In Case 1, when zstart is between Point A and Point B
(i.e., zB ≤ zstart ≤ zA where zA and zB are the z-coordinates
of A and B, respectively), the maximum θ is limited by
Hmax, while the minimum θ has no limitation except −Θmax.
Hence, the valid range of θ is [−Θmax, Θupper], where
Θupper = arcsin((Hmax− zstart)/(L/2)) is the angle at which
the conveyor belt is at the maximum height. Similarly, when
zstart is between Point C and Point D, the minimum θ is
limited by Hmin, while the maximum θ has no limitation
except Θmax. Hence, the valid range of θ is [Θlower, Θmax],
where Θlower = arcsin((Hmin− zstart)/(L/2)) is the angle at



TABLE I: The range of θ in every case in Fig. 4

Case Range of zstart Range of θ

1a zB ≤ zstart ≤ zA −Θmax ≤ θ ≤Θupper

1b zC ≤ zstart ≤ zB −Θmax ≤ θ ≤Θmax

1c zD ≤ zstart ≤ zC Θlower ≤ θ ≤Θmax

2a zC ≤ zstart ≤ zA −Θmax ≤ θ ≤Θupper

2b zB ≤ zstart ≤ zC Θlower ≤ θ ≤Θupper

2c zD ≤ zstart ≤ zB Θlower ≤ θ ≤Θmax

3a zB ≤ zstart ≤ zA −Θmax ≤ θ ≤Θupper

3b zE ≤ zstart ≤ zB −Θmax ≤ θ ≤Θmax

3c zF ≤ zstart ≤ zE Θfloor ≤ θ ≤Θmax

3d zO ≤ zstart ≤ zF Θlower ≤ θ ≤Θmax

4a zE ≤ zstart ≤ zA −Θmax ≤ θ ≤Θupper

4b zB ≤ zstart ≤ zE Θfloor ≤ θ ≤Θupper

4c zF ≤ zstart ≤ zB Θfloor ≤ θ ≤Θmax

4d zO ≤ zstart ≤ zF Θlower ≤ θ ≤Θmax

5a zE ≤ zstart ≤ zA −Θmax ≤ θ ≤Θupper

5b zF ≤ zstart ≤ zE Θfloor ≤ θ ≤Θupper

5c zB ≤ zstart ≤ zF Θlower ≤ θ ≤Θupper

5d zO ≤ zstart ≤ zB Θlower ≤ θ ≤Θmax

6a zF ≤ zstart ≤ zG Θfloor ≤ θ ≤Θupper

6b zO ≤ zstart ≤ zF Θlower ≤ θ ≤Θupper

TABLE II: Definitions of the constants in Fig. 4 and Table I.
∆max = (L/2)sin(Θmax)

Θlower = arcsin((Hmin− zstart)/(L/2))
Θupper = arcsin((Hmax− zstart)/(L/2))

Θfloor =−arcsin(zstart/L)

which the conveyor belt it at the minimum height. When
zstart is between Point B and Point C, the pitch angle is not
bound by the height, and therefore the valid range of θ is
[−Θmax, Θmax]. zstart cannot be larger than zA or smaller
than zD as the height will exceed the limits. These results
are summarized in Cases 1a, 1b, and 1c in Table I.

In Case 2, the range of the height is smaller than 2∆max,
and when zstart is between Point B and Point C, the pitch
angle is bound by the maximum height and the minimum
height at the same time. Apart from this, all other cases are
the same as Case 1. These results are summarized in Cases
2a, 2b, and 2c in Table I. Case 2 remains true even when
the feasible height range is reduced to zero. Thus there are
no other cases to consider when ∆max ≤ Hmin.

However, when ∆max ≥Hmin, the conveyor belt may touch
the ground. Then the minimum pitch angle depends on Point
E and Point F at the intersections of the two cyan lines and
the z-axis in Fig. 4. Point E is the starting point when the
pitch angle is −Θmax while the end point touches the ground.
Point F is the starting point when the height is Hmin and
the end point touches the ground. When zstart ≥ zE , there is
no restriction on the lower bound of θ due to the minimum
height and the ground. Thus the minimum θ is −Θmax. When
zF ≤ zstart ≤ zE , the lower bound of θ is limited the ground
and hence the minimum θ is Θfloor = −arcsin(zstart/L).
When 0 ≤ zstart ≤ zF , the lower bound of θ is once again
restricted by the minimum height; thus the minimum θ is
Θlower. All of the above are true in Case 3, Case 4, and
Case 5; the only difference in these cases is the location of
Point B, causing different combinations of the upper bounds
of θ and the lower bounds of θ .

Case 6 is a special case in which Hmax is small enough
so that the belt can always touch the ground even at Hmax.

(a) Case 1a: zstart = 18 (b) Case 1b: zstart = 13

(c) Case 1c: zstart = 6 (d) Case 2a: zstart = 21

(e) Case 2b: zstart = 17.8 (f) Case 2c: zstart = 16.5

Fig. 5: Some reachable sets in Case 1 and Case 2. We
have Hmin = 5m in Case 1 and Hmin = 16m in Case 2.
Other parameters are L = 10m, Hmax = 20m, Dmin = 2m,
Dmax = 5m, and Θmax = 30◦.

There is one more special point on the z-axis in this case:
Point G is the starting point when h = Hmax and the ending
point touches the ground (the magenta line in Fig. 4). zstart

cannot be larger than zG; otherwise the ending point will go
below the ground. The upper bound of θ is always bound
by Hmax, hence θ ≤ Θupper. The lower bound of θ depends
on whether zstart ≥ zF .

In Fig. 4 we can see that the line z = Hmax gradually
approaches the line z = Hmin from Case 3 to Case 6. Case 6
is the last case we need to consider because Hmax cannot be
less than Hmin. Given Hmin, Hmax, Θmax, L, and zstart, we can
find the upper bound and the lower bound of θ from Table I
and Fig. 4. Using θ bounds in Eq. 2 yields the reachable
set. Fig. 5 shows some examples of the reachable sets (the
orange regions) in Case 1 and Case 2. Fig. 5(c) shows the
constraint z≥ 0 limiting the reachable set.

V. GENERATING CONFIGURATIONS FOR A
REACHABLE POINT

Given a point p = (x,y,z) ∈ R which is reachable from
pstart = (xstart,ystart,zstart), we want to compute the con-
figuration (x′,y′,φ ,h,θ) for a conveyor belt to reach p.
In our 2D environments, y′ = ystart = 0 and φ = 0. Since
pstart is fixed, we have x′ = xstart + (L/2)cos(θ) and h =
zstart +(L/2)sin(θ), both of them depend on θ . To compute
θ , consider 1) the vertical line segment [z+Dmin, z+Dmax]
at x, and 2) the arc of the circle centered at (xstart,0,zstart)
with a radius L and a range of angles of the maximum and
minimum of θ according to Table I. There are either one
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Fig. 6: The search space of the automatic configuration
algorithm when M = 4 and N ≥ 3.

or two intersections between the line segment and the arc.
These intersections are the end points of the conveyor belt
that satisfy the dropping distance constraint to reach (x,0,z).
Each intersection can yield a value of θ by θ = arcsin((z′′−
zstart)/L) where z′′ is the height of the intersection. Thus
there can be two possible configurations to reach (x,0,z).

We can easily extend this calculation to any reachable
point (x,y,z) in the 3D toroidal reachable set in 3D en-
vironments by transforming pstart and (x,y,z) to the x-z
plane by a rotation matrix. Then the configuration is (xstart+

(L/2)cos(θ), y+ystart

2 ,arctan( y−ystart

x−xstart ),zstart + (L/2)sin(θ),θ)
for one or two possible values of θ .

VI. THE AUTOMATIC CONFIGURATION
ALGORITHM AND THE OVERLAPPING EFFECT

Based on the reachability analysis in Section IV, we
devised Algorithm 1 to generate a configuration for a
set of conveyor belts to connect an entry point pentry =
(xentry,yentry,zentry) to an exit point pexit = (xexit,yexit,zexit).
The algorithm starts from pentry and considers adding con-
veyor belts one at a time to the conveyor line and randomly
computing a set of M reachable sets that the newly added
conveyor belts may reach, until it finds a reachable set that
contains pexit (Line 8). We denote the set of reachable sets
after adding the i’th conveyor belt as Qi. Initially, we set Q0

to contain only one reachable set, which is the vertical line
segment below pentry (Line 2–3). For i≥ 1, Qi is computed
by 1) computing the union Ui of the all reachable sets in Qi−1

(Line 5), 2) randomly choosing M points in Ui (Line 6), and
3) finding the reachable sets of the chosen points according
to Section IV and adding them to Qi (Line 7). Suppose
a reachable set that contains pexit is found after adding n
conveyor belts. After that the algorithm searches backward
to find the sequence of reachable sets that leads to pexit, as
shown in the red regions in Fig. 6. The points p∗0, p∗1, . . . , p∗n−1
from which the reachable sets are generated (i.e., the yellow
dots in Fig. 6) are the starting points of the n conveyor
belts (Line 12–13). Since the algorithm keeps all pk and Ri

k
generated in Line 7, no computation is needed to find p∗i−1 in
Line 13. Then we can compute a configuration for the entire
conveyor line using p∗0, p∗1, . . . , p∗n−1 according to Section V
(Line 14–16). We can easily verify that this configuration
satisfies the constraints C1-C6 in Section III.

Algorithm 1 works in both 2D and 3D environments.
In 2D environments, all conveyor belts are aligned on a
2D plane. As shown in Fig. 6, there are many overlaps
among reachable sets. This is true in practice because the

Algorithm 1 The automatic configuration algorithm.

1: procedure FINDCONFIG(pentry, pexit,N,M)
2: R0

1 := {(xentry,yentry,z) : z ∈ [zentry−Dmax,zentry−Dmin]}
3: Q0 := {R0

1}; n := nil
4: for i := 1 to N do
5: Ui :=

⋃{
R : R ∈ Qi−1}; Qi := /0

6: Randomly select M points p1, . . . , pM in Ui
7: for each pk, do generate Ri

k from pk; Qi := Qi∪{Ri
k}

8: if there exist k∗ such that pexit ∈ Ri
k∗ then n := i; break

9: if n = nil then return “No solution”
10: p∗n := pexit

11: for i := n down to 1 do
12: Identify k∗i and Ri

k∗i
such that p∗i ∈ Ri

k∗i
∈ Qi

13: Identify p∗i−1 which generated Ri
k∗i

in Line 7
14: Compute θi for the i’th belt to reach p∗i from p∗i−1
15: where p∗i−1 is the starting point of the belt.
16: Compute (xi,yi,φi,hi,θi) using one of the values of θi.
17: return 〈(xi,yi,φi,hi,θi)〉i=1..n

maximum pitch angles and maximum dropping distances
are usually quite small, constraining the possible starting
points of the next conveyor belt to a small region. We
call this observation the overlapping effect. Our algorithm
exploits this effect by sampling in the union of the set of
reachable sets uniformly in Line 5–6. As we will demonstrate
in our experiment in Section VII, searching with M sampling
points simultaneously is better than making M independent
searches, each with one sample point. This is because the
overlapping region will be less likely to be sampled again
due to the overlapping effect.

However, the overlapping effect is less prominent in 3D
environments. Due to the freedom in the extra dimension,
the algorithm performs poorly if we do not guide the search
towards the exit point. Our solution to this problem is to give
a higher chance to the sample points that are closer to the
exit point. More specifically, in Line 6, we randomly choose
M×K points in Ui for some constant K. Then we assign
a weight Wp to each chosen point p, where Wp is a large
constant W minus the distance between p and the exit point.
After that we randomly select M points out of these chosen
points according to their weights, such that points closer to
the exit point will have a higher probability to be sampled.
As shown in the next section, this heuristic can help finding
a solution in 3D environments quickly.

VII. EXPERIMENTAL EVALUATION

We conducted two experiments to evaluate our automatic
configuration algorithm in 2D and 3D environments. In
the 2D experiment, for each 1 ≤ N ≤ 20, we randomly
generated 100 solvable problems in a 2D environment by
choosing the parameters with a uniform probability distri-
bution in the following ranges: Hmax ∈ [400, 600], Hmin ∈
[200, 400], L ∈ [200, 400], Dmax ∈ [30, 50], Dmin ∈ [5, 10],
Θmax = 30◦, Here, all units except Θmax’s are in centime-
ter. For each set of parameters, we chose an entry point
pentry by setting xentry = yentry = 0 and choosing zentry ∈
[Hmin − (L/2)sin(Θmax), Hmax + (L/2)sin(Θmax)]. Starting
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Fig. 7: The success rates in 2D environments.
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Fig. 8: The success rates in 3D environments.

from pentry, we connected N conveyor belts by randomly
choosing a dropping distance d ∈ [Dmin Dmax] and a pitch
angle θ ∈ [−Θmax, Θmax]. We also made sure that the end
points of conveyor belts do not go below the ground. After
that we chose an exit point pexit within the dropping distance
below the end point of the last conveyor belt. Then the pair
(pentry, pexit) is a problem instance that must have a solution
(i.e., a configuration exists to connect pentry to pexit).

We ran the algorithm 100 times for each of the following
values of M: 1, 2, 4, and 8. For a fair comparison, we
gave each run of the algorithm 50 milliseconds and let the
algorithm restart if it could not find a solution within the
time limit. Then we measured the success rates out of the
100 executions and plotted the graph in Fig. 7. Note that
each data point in Fig. 7 is an average of 10000 values,
and the error bars are the 95% confidence intervals. As we
predicted in Section VI, the algorithm has a higher success
rate when M is large. However, in all cases the successful
rates decrease gradually as the number of conveyor belts in
the problem generation increases.

We repeated the same experiment in a 3D environment.
As before, we generated 100 problems for each N ∈ [1, 20].
The difference is that we needed to choose φ whenever we
added a conveyor belt. To make sure that the exit point
is sufficiently far away from the entry point, we chose
φ ∈ [φ ′−90◦, φ ′+90◦], where φ ′ is the heading of the last
conveyor belt. We ran the algorithm 200 times for 4 different
values of M, half used the heuristic proposed in Section VI
to bias the search towards the exit point, while the other half

searched freely in all directions. We also reduced the time
bounding the execution to 20 milliseconds. Fig. 8 shows
the results of this experiment. Without using the heuristic
to guide the search process, the algorithm cannot find any
solution when N ≥ 10. The overlapping effect is weak in the
3D environment, and thus the differences in success rates for
different values of M is not as large as in the 2D experiment.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed to incorporate mobility into conveyor belts
and studied how to connect several mobile conveyor belts to
form a conveyor line to reach a given destination. Conveyor
belts are good at moving a large quantities of objects, and
hence can play a larger role in any robotic system in rescue
missions or logistic domains. Our key results include a
complete set of equations to describe the reachable set of a
mobile conveyor belt on a flat surface, which leads to an effi-
cient probabilistic approach for automatic configuration. Our
experimental results demonstrated the overlapping effect,
which states that the reachable sets are often overlapped. In
the future, we would like to study the automatic configuration
of mobile conveyor lines subject to limited mobility in rough
terrains such as nuclear disaster areas.
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