
Learning of Vehicular Performance Models for Longitudinal Motion
Planning to Satisfy Arrival Requirements

Ty Nguyen1, Dung Nguyen1, and Tsz-Chiu Au1

Abstract— Motion planning with predictable timing and ve-
locity will enable a number of interesting applications such as
autonomous intersection management (AIM). These planning
algorithms depend on an accurate model of the performance
of the vehicular controllers, which can be highly non-linear.
Au et al. proposed a motion planning algorithm to satisfy
the arrival requirements in AIM. However, they assumed that
the performance models are given for every road and did not
discuss how to learn these models. In this paper, we propose
an instance-based learning approach to learn the performance
models automatically, and argue that instance-based learning
is suitable for this learning task because performance models
for different roads can have a high correlation with each other.
Moreover, an exploration strategy based on the principle of least
effort is given to speed up the learning process. Our experiments
showed that the instance-based learning method with distance-
based exploration strategy offers a faster learning rate than the
artificial neural network methods.

I. INTRODUCTION

Motion planning algorithms often assume an accurate
model of physical systems for the reliable execution of mo-
tion plans. However, this assumption does not hold in many
real world situations, causing errors in plan execution. For
example, Au et al. [1] considered the problem of controlling
a mobile robot (e.g., an autonomous vehicle) to arrive at a
given position on a one dimensional trajectory at a specific
arrival time and a specific arrival velocity. This motion
control with arrival requirements is fundamental in a number
of multi-robot systems, in particular autonomous intersection
management (AIM) which coordinates vehicles to enter an
intersection in unison, leading to a much lower traffic delay
than traffic signals and stop signs [2]. In some sport games
such as robot soccer, the question of whether a player can
move to a target position at certain time and at certain
velocity to hit a ball is important in role assignment and
formation positioning [3]. The motion planning algorithms in
[1] depend on an accurate model of the vehicle’s performance
on every road in order to plan ahead to meet the arrival
requirements. However, [1] assumed the performance models
are given and did not discuss how to build them. Since a
vehicle will run in a wide variety of road conditions, we
could not obtain the performance models for running on
all possible roads ahead of time. Therefore, it is necessary
to employ some machine learning techniques to conduct
vehicle performance profiling automatically while driving on
an unfamiliar road.

1School of Electrical and Computer Engineering, Ulsan National Institute
of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulij-gun, Ulsan,
Republic of Korea {tynguyen,dung,chiu}@unist.ac.kr

In this paper, we consider two approaches for learning
a performance model of a vehicle. The first approach is
artificial neural networks, which is a popular method for
function approximation. The second approach is the instance-
based learning approach, which relies on the correlation be-
tween performance models for different roads. In addition, to
improve the rate of convergence of these learning algorithms,
we propose a new exploration strategy that gathers samples
with the least effort first. A fast learning algorithm can reduce
the model error that would have an impact on the perfor-
mance of the motion planner that utilizes the performance
model on the go. Hence, we conduct experiments to evaluate
these approaches and find out which one can learn faster.

This paper is organized as follows. After presenting the
related work in Section II, we give the definition of a per-
formance model in Section III. Then we define a longitudinal
motion planning problem that utilizes a performance model
in planning in Section IV. Section V gives the details of
the two learning approaches, and Section VI describes the
exploration strategy. Finally, we present experimental results
in Section VII before we conclude in Section VIII.

II. RELATED WORK

The acceleration profiles of a vehicle can be used for
motion planning in autonomous vehicles, estimation of fuel
consumption and emission, crash simulation, etc. Effectively
modeling the acceleration behavior of vehicles is essential
to the control of autonomous or semi-autonomous vehicles,
which in turn affects the performance of transportation
systems. For instance, modeling vehicle accelerations is
important in motion planning in AIM as discussed in the
introduction. Thus, researchers have been trying to develop
models to predict the acceleration profiles of a vehicle. In
practice, there are several difficulties in obtaining a set of
precise equations describing the accelerating behavior of a
vehicle under a particular traffic condition, including the
imperfect vehicle dynamics, noise and the complexity in
modeling the environment characteristics. Therefore, data-
driven methods have been serving as an alternative approach
to acquire a model of the accelerating behavior. Machine
learning is the key to build these models, as discussed in
a survey of model learning for robot control presented by
Nguyen-Tuong and Peters [4].

In general, data-driven methods can be divided into two
main categories: parametric approaches and nonparametric
approaches. In parametric approaches, a model can fall into
the categories of either kinematics models or dynamics mod-
els. Kinematics models consider the mathematical relation-

Velocity)(m/s))

Time(s))
0)
0) 1) 2) 3) 4) 5)

5)

10)

Fig. 1. An example of the velocity response of a PID controller.
Overshooting occurs when the vehicle decelerates to a velocity that is close
to zero.

ship between acceleration, speed, and distance that a vehicle
traveled. The most simple kinematics models are the constant
acceleration model, the linear decay model [5], and the dual-
regime model [6], to name a few. These models basically
attempt to empirically construct mathematical expressions
that describe how the vehicle accelerates. However, the
determinant factor of the acceleration process—the tractive
force provided by the engine and the opposing resistance
forces are ignored. For this reason, these kinematics models
cannot provide reasonable fitting to field data.

Both of the tractive effort and resistance forces which
act on the vehicle’s body and control the vehicle’s motion
can be taken into account to develop vehicle dynamics
models. Rakha et al. was the first to bring forth a constant
power model and a variable power model to determine the
performance of trucks [7]. Many efforts have been followed
by [8] and [6] to calibrate the dynamics models. Although
these dynamics models provide a good fit to the field data, it
is hard to decide which breaking points are appropriate for
different regimes, not to mention that these breaking points
are subject to variation as data sets change. Besides, these
models need intensive calibration before using them.

The downsides of the parametric models are twofold. First,
the majority of parametric models only predict the maximum
acceleration capabilities of a vehicle. Second, due to the limit
of the number of parameters, it is hard to estimate highly
nonlinear terms with measurement noise. For these reasons,
nonparametric estimation can be a suitable alternative. For
example, Kim and Oh adopted an artificial neural network
model to predict the next state of the vehicle given the
current vehicle state, the current steering angle of the wheels,
and the vehicle’s velocity [9]. The neural network model is
associated with the hybrid learning scheme. In addition, Park
et al. introduced a speed prediction algorithm with a model
that is trained with the historical traffic data and capable of
predicting the vehicle speed profile by using current traffic
information [10].

III. PERFORMANCE MODELS

The goal of modeling vehicle performance is to allow
long-term planning of vehicle’s movement without knowing
the details of vehicle dynamics and controls. This separation
of high-level planning from lower-level vehicle controls
enables our planning procedures, called setpoint schedulers,

(a) Stable Time (b) Stable Distance

Fig. 2. Stable time and stable distance for the vehicle in [1]. The light
color means longer time and distance, as indicated in the bars beside the
graphs.

to work with a wide variety of vehicle hardware with dif-
ferent underlying control mechanisms. Longitudinal control
of autonomous vehicles are usually achieved by throttle and
braking systems coupled with sensors such as odometers and
speedometers using PID-controllers. A setpoint is the target
velocity given to the PID-controllers so as to control the
vehicle to reach the velocity. However, due to the complexity
of the system, it is often hard to tune the PID gains to achieve
a smooth transition after changing the setpoint. For example,
if the autonomous vehicle at UT Austin decelerates from
9 m/s to 2 m/s, it takes 4.7 s to stabilize and the stable
distance is 19.3 m—-a rather long stable time and stable
distance. This problem is due to overshooting as illustrated
in Fig. 1.

Fortunately, for planning purpose it is not necessary to take
every detail of the vehicular behavior into account. Given the
current velocity v and a setpoint v̂, the setpoint scheduler
only needs to know how long the PID controllers will take
to stabilize at v̂ after setting the setpoint to v̂, and how much
the vehicle will move before its velocity is stabilized. Thus
we propose to estimate two functions T stable and Dstable,
where T stable(v, v̂) is the time the vehicle takes to stabilize
at v̂ and Dstable(v, v̂) is the distance the vehicle travels after
setting the setpoint to v̂ for a period of T stable(v, v̂). We call
T stable(v, v̂) and Dstable(v, v̂) the stable time and the stable
distance, respectively. The performance model of the vehicle
is the pair (T stable,Dstable). Fig. 2 shows the performance
model of a vehicle in a table format.

The performance model in Fig. 2 is built via an empirical
performance profiling of the PID controllers for the brake and
throttle actuators. Our previous work assumed this profiling
is given [11]. This paper discusses in detail how this profiling
can be achieved by online machine learning techniques.

IV. SETPOINT SCHEDULING PROBLEMS

Let us define a setpoint scheduling problem that utilizes
a performance model. Suppose a vehicle is moving on a
one-dimensional trajectory such as a road. We are inter-
ested to control the vehicle to arrive at a destination on
a road at a given arrival time tend and at a given arrival
velocity vend. We define 1) the initial configuration as
(t0,v0), 2) the arrival configuration as (tend,vend), and 3)

v(t)	

Velocity	

Time	

vmax	

v0	

0	

t0	
 tend	

D	

vend	
 ≤	
 vend	

max	

Fig. 3. The time-velocity diagram.

the road configuration as (D,amax,amin,vmax), where D is
the road’s length, vmax is the speed limit of the road, and
amax and amin are the maximum and minimum acceleration,
respectively. A longitudinal motion planning problem Pvalid

is a 3-tuple 〈(t0,v0),(tend,vend),(D,amax,amin,vmax)〉, where
t0,v0, tend, and vend are initial time, initial velocity, arrival
time, and arrival velocity, respectively, such that t0 = 0,
0 ≤ v0 ≤ vmax, 0 < tend, 0 ≤ vend ≤ vmax, 0 < D, amax ≥ 0,
amin ≥ 0, and 0 < vmax. Our planning task is to generate a
setpoint schedule such that if the vehicle follows the schedule
exactly, it will reach the destination while satisfying all
requirements and constraints. We denote a setpoint schedule
by τ(·). If τ(·) is a step function, τ(·) can be represented by
a list of pairs 〈(t0, v̂0),(t1, v̂1), . . .(tn, v̂n)〉, such that τ(t) = v̂i
for (1) ti≤ t < ti+1 for 0≤ i< n and (2) ti≤ t for i= n. In this
paper, we assume all setpoint schedules are step functions.

One way to visualize what we are trying to achieve is to
take a look at the time-velocity diagram in Figure 3. In this
diagram, the line is a velocity function which denotes the
velocity of the vehicle over time. A velocity function v(·)
is constructible if there exists a setpoint schedule τ(·) such
that if the vehicle follows τ(·), the velocity of the vehicle
is v(·). A velocity function v(·) is feasible if it satisfies the
following constraints:

1) v(t0) = v0;
2) 0≤ v(t)≤ vmax for t0 ≤ t ≤ tend (i.e., the velocity cannot

exceed the speed limit of the road or be negative at any
point in time);

3)
∫ tend

t0 v(t)dt = D, where tend is the arrival time (i.e., the
distance traveled must be D); and

4) v(·) is constructible.
A setpoint schedule τ(·) is feasible if the velocity function
constructed by τ(·) is feasible.

The objective of a longitudinal motion planning problem
Pvalid is to check whether a feasible setpoint schedule
τ(·) exists, and generate τ(·) if it exists. Pvalid is also
called an instance of the validation problem, in which we
want to validate the given arrival configuration (tend,vend)
by checking whether (tend,vend) is reachable by a feasible
setpoint schedule.

V. INSTANCE-BASED LEARNING ALGORITHMS

As aforementioned, a performance model has two func-
tions: T stable and Dstable. Our learning task is to estimate
these functions by function approximators. One popular

Fig. 4. A performance model represented by two artificial neural networks

function approximator is artificial neural networks (ANNs).
A well-known algorithm for training ANNs with hidden
layers is the backpropagation algorithm [12]. Fig. 4 shows
the ANNs that we used as the performance model in our
experiments. We used two ANNs, one for T stable and the
other for Dstable, and they work independently although we
can also build a larger, single ANN to output both T stable

and Dstable. The input nodes are v0 and v1, which are the
starting velocity and the setpoint, respectively. Both ANNs
have a hidden layer with 5 nodes. Given the error in the
output nodes, we will use the backpropagation algorithm to
adjust the weights of the ANNs.

The learning process, however, can perform better if there
is a way to utilize the prior knowledge about the correlation
between the performance models on different roads, since
a performance model is largely dominated by the vehicle’s
controller rather than the road conditions. Therefore, we
propose an instance-based learning approach that utilizes
the performance model on another road while learning the
performance model. This approach involves three steps:
First, compute the performance models of some reference
roads which we consider typical among the set of roads we
consider. Second, choose a reference road that is similar to
the road on which the vehicle will run. Third, adjust the
performance model of the chosen reference road according
to the “samples” the vehicle collected by interacting with
the road. Here, a sample is the stable time ts and the stable
distance ds after setting a new setpoint. Given a sample
(ts,ds), we adjust the stable time function and the stable
distance function, which are internally represented by two
tables, according to the following update rule. Suppose the
previous velocity is v and the new setpoint is vnew. Let
ts and ds be the stable time and the stable distance we
measured after setting vnew and until the velocity settles at
vnew. Let t ′s and d′s be the stable time and the stable distance in
the performance model before the application of the update
rule. Then the update rule is that for every pair (v1,v2) of
velocities in the tables.

T stable(v1,v2)=

 ts if v1 = v and
v2 = vnew

T stable(v1,v2)+λL∆t otherwise

and

Dstable(v1,v2)=

 ds if v1 = v and
v2 = vnew

Dstable(v1,v2)+λL∆d otherwise,

where λ is the learning rate, ∆t = ts − t ′s, ∆d = ds − d′s,

and L = ||v2 − v1||22. Here we assume the measurement
is noise free but our approach can still work with noisy
measurements by taking the average of measurements instead
of assigning a single measurement value to T stable(v1,v2) and
Dstable(v1,v2). The term L gives the entries closer to the top-
left corner and the bottom-right corner of the tables a larger
weight. It is because these entries usually have bigger values
due to the fact that there is large difference between the
current velocity and the setpoint, and the vehicle will take
more time and longer distance to stabilize at the setpoint.

In our experiments, the ANNs were pre-trained in the
same environment that yields the performance model of the
chosen reference road, so that the starting point of ANNs is
equivalent to the performance model used by the instance-
based learning method. This provides a fair comparison
between our proposed method and ANNs in the experiments.

VI. MIN-DISTANCE EXPLORATION STRATEGY

The two important factors in learning the performance
model of a vehicle are completeness and convergence speed.
For completeness, we can easily show that in our instance-
based learning approach, the performance model will con-
verge to the true model when there are enough measurements
of stable times and the stable distances of with different
initial and target setpoints.

On the other hand, a fast rate of convergence to the true
performance model is very important because the vehicle
may not have enough time to acquire all the measurements
before it uses the performance model for motion planning.
Obviously, the rate of convergence can be greatly improved
if the vehicle can obtain a fairly accurate performance model
early on by finding a good reference road. The rate of
convergence also depends on the sequence of samples that
the vehicle collects. In general, since the performance model
(T stable,Dstable) will be used repeatedly for many different
motion planning episodes, each of them uses different parts
of the model, we want the estimated model to be as complete
as possible, meaning that we should spread out the samples
so that no part of the model will be ignored forever while
avoid collecting the same sample multiple times. To facilitate
the sampling process, the vehicle employs an exploration
strategy, which determines the sequence of samples so as to
minimize the time it takes to learn the performance model.

Here we consider exploration strategies that have the
following three characteristics: First, the vehicle will sample
at the discrete velocity values only. Let V= {n×d}n={0..m}
be the set of velocities where d is the discretization step and
d×m is the maximum velocity, which is either the speed
limit of the road or the maximum velocity of the vehicle.
Second, after a vehicle deliberately changes its setpoint to
measure the stable time and the stable distance, it will
immediately start another measurement right after the vehicle
is stabilized at the new setpoint. The result is that the ending
velocity of a sampling step is always the starting velocity of
the next sampling step. This way the vehicle can avoid the
idle time between two samples. Third, the vehicle should

avoid collecting the same sample again, because the same
measurement provides less information than the new ones.

Based on these characteristics, an exploration strategy can
be considered as a sequence of setpoints 〈v0,v1,v2, . . . ,vn〉,
where v0 is the initial velocity of the vehicle, and vi is
the next setpoint after the vehicle stabilizes at vi−1, for
i ≥ 1. The vehicle, starting with the initial velocity v0, will
first set its setpoint at v1 and then measure the stable time
and stable distance when its velocity stabilizes at v1. After
this measurement, it immediately sets its setpoint at v2 for
the second measurement. Then the process continues until
the last setpoint vn. To ensure completeness, this sequence
of setpoints should be chosen to exhibit the property that
the set of all possible consecutive pairs of setpoints (i.e.,
{(vi,vi+1)}i=0..(n−1)) is exactly the set of all possible pairs of
different velocities in V (i.e., {(v,v′) : v,v′ ∈ V and v 6= v′}).
Thus, under this exploration strategy, the performance model
will converge to the true one.

In this paper, we propose an exploration strategy as
follows: when choosing the next setpoint for the next mea-
surement after a vehicle stabilizes at v, always choose the
one that has the minimum stable distance according to
the performance model (i.e., choose argminv′{Dstable(v,v′) :
Dstable(v,v′) has not been measured yet.}). If there is no
such setpoint, choose the next setpoint randomly. We call this
strategy the min-distance exploration strategy. We hypothe-
size that if an exploration strategy takes the measurements
that require a shorter distance of travel first, the rate of
convergence to the true performance model will be faster.
We will evaluate this greedy approach in our experiments.

VII. EXPERIMENTS

We conducted two experiments to evaluate the learning
methods and the exploration strategy. In the first experiment,
we ran the learning algorithms to generate vehicle’s perfor-
mance models and compare them to the true performance
model in order to assess the errors of the generated tables.
In the second experiment, we used the tables in the first
experiment to generate setpoint schedules and executed them
to evaluate the errors in planning. All experiments are based
on a simulation platform we developed using PyGame1, a
Python library that supports 2-D simulation. In a simulation,
a vehicle is running along a straight road with a slope.
Fig. 5 shows a screenshot with a very short slope. In our
experiments, the slope is much longer—long enough to finish
a learning episode. Before each learning episode, we have
to set various parameters including the angle of the slope,
the air resistance, the friction force coefficients, etc. For each
parameter setting, our goal is to learn a performance model
when the vehicle runs on the slope.

We implemented our ANNs using PyBrain [13], a machine
learning library for Python. The ANNs in our experiments
are two feedforward neural networks that use the sigmoid
activation function as shown in Fig. 4. Both ANNs consist

1http://www.pygame.org

Fig. 5. A screenshot of the simulator with a short slope.

of two input nodes, which correspond to the starting velocity
and the target velocity. We examined the effects of the num-
ber of nodes at the hidden layer and the number of hidden
layers, by allowing the number of nodes at the hidden layer
to vary from 2 to 10 and the number of hidden layers to vary
from 1 to 10. After a thorough evaluation, we settled with
one hidden layer and five nodes. As discussed in Section V,
the ANNs were pre-trained in the same environment as the
one generated the performance model of the chosen reference
road. The ANNs were updated by using the backpropagation
algorithm in PyBrain. After collecting a sample, we trained
the ANNs until it cannot improve the convergence rate or
the number of episodes exceeds 50.

The implementation of the instance-based learning was
based on the update rule as described in Section V. The
learning process started with a performance model of the
reference road, and updated the performance model accord-
ing to the update rule. We found that a larger learning rate
can result in a faster but more uncertain convergence. In this
study, the learning rate α is 0.5.

In our experiments, we randomly chose 30 sets of param-
eters in the simulation that constitute the set of reference
roads. A set of parameters is a 3-tuple 〈θ ,Cr,ρ〉, where θ is
the slope of the road (0 ≤ θ ≤ 60), Cr is the coefficient of
rolling friction (0.001 <Cr ≤ 0.303), and ρ is the density of
air (1.146≤ ρ1.423). For each set of parameters, we learnt
an accurate performance model of the reference roads by
exhaustively testing all possible pairs of starting velocities
and setpoints. Then we used it as the performance model
in our instance-based learning approach. We also ran the
backpropagation algorithm for ANNs on the reference road
to initialize the weights in the ANNs.

In the training stage, we considered two exploration
strategies, one is the min-distance exploration strategy as
discussed in Section VI and the other is a random strategy
that randomly chooses the next setpoint in the learning
process. We applied both strategies to both ANNs and the
instance-based learning. The vehicle in the simulation used
the exploration strategies to try out different sequences of
setpoints such that it collects different sequences of stable
times and stable distances, based on which it updates the
performance models. Eventually, all possible pairs of starting
velocities and setpoints would be tried and the exploration
process stops. The training stage ends after the exploration
process stops. Eventually, we obtained a final performance
model which was solely based on the measurement of every
pairs of starting velocities and setpoints, and therefore it is

the true performance model.
In the first experiment, we computed the model errors

against true models with respect to the training time which
is the cumulative time the vehicle took to collect samples.
This allows us to see how quick the learning approaches
can reduce the model error. An alternative to the training
time in the evaluation of the model errors is the total
number of samples, but we preferred the training time for
the sake of optimizing the operation time which is costly.
This model errors were quantified by the root mean square
errors (RMSE) of the difference of two matrices, one was
the learned model and the other was the true model of the
corresponding environmental conditions. Given an intermedi-
ate performance model that was acquired during learning, we
subtracted the final performance model from an intermediate
performance model to get an error table. For the entries in the
intermediate performance model that were based on actual
measurement, we set the corresponding entry in the error
table to zero. Then we computed the root-mean-square of
all entries in the error table.

We plotted the RMSEs as the performance models evolved
over time, and the result is shown in Fig. 6 and 7. Notice
that each data point in the figures is an average of 30 RMSEs
of 30 trials, and the error bars represent the 95% confident
intervals. As can be seen, the instance-based approach out-
performed the ANN approach in terms of the learning speed
in both the stable time and the stable distance. Moreover,
the min-distance exploration strategy did have some positive
influence on the learning speed. The only exception is that
when the ANN approach was used with the min-distance
exploration strategy, the learning speed was comparable to
the best strategy when the training time was large. But overall
the instance-based learning approach, together with the min-
distance exploration strategy, had the best performance.

In the second experiment, we used the intermediate models
generated during the training stage to compute setpoint
schedules, and then evaluated these setpoint schedules using
the simulation platform. The purpose of this experiment is to
figure out which learning method is better for our setpoint
scheduling problem. In order to evaluate the intermediate
performance models with a given problem configuration, we
implemented the bisection method as described in [1] to
generate a setpoint schedule and executed it in the simulation
platform under the corresponding set of parameters. Each
experiment includes the following steps: 1) randomly chose
a road with a set of parameters as in the first experiment
and generated the reference performance models; 2) learnt
performance models for this road with different learning
methods and exploration strategies to generate intermediate
models; 3) randomly generated 30 different setpoint schedul-
ing problems and use the bisection method to generate 30
corresponding motion plans for each intermediate model; and
4) executed those plans and observed the errors in arrival
time, velocity, and distance.

We repeated the above procedure 50 times and report
the result. Due to the specific property of the bisection
method which put arrival time and arrival velocity at a high

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1000 2000 3000 4000

R
o

o
t

M
ea

n
 S

q
u

ar
e

Er
ro

r
(s

)

Training Time (s)

Error in Stable Time v.s. Learning Time

Artificial Neural Network + random

Instance-based Learning + random

Artificial Neural Network + min-distance

Instance-based Learning + min-distance

Fig. 6. RMSEs of stable time versus training time

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000

R
o

o
t

M
ea

n
 S

q
u

ar
e

Er
ro

r
(m

)

Training Time (s)

Error in Stable Distance v.s. Learning Time

Artificial Neural Network + random
Instance-based Learning + random
Artificial Neural Network + min-distance
Instance-based Learning + min-distance

Fig. 7. RMSEs of stable distance versus training time

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000

R
o

o
t

M
ea

n
 S

q
u

ar
e

Er
ro

r
(m

)

Training Distance (m)

Error in Execution Distance v.s. Learning Distance

Artificial Neural Network + random
Instance-based Learning + random
Artificial Neural Network + min-distance
Instance-based Learning + min-distance

Fig. 8. RMSEs of execution distance versus training distance.

priority, the errors in arrival time and arrival velocity are
quite small. Therefore, we only report the errors in distance
which is shown in Fig. 8. From this figure, we can see
that the ANN approach produced smaller distance errors
than the instance-based learning approach did while the min-
distance exploration strategy yielded a better accuracy than
the random exploration strategy when being combined with
each learning approach.

VIII. CONCLUSIONS

For precise vehicle control, motion planning algorithms of-
ten rely on a performance model of controllers that accurately
describes how the vehicle interacts with the road. In this
paper, we focused on learning a behavior-based performance
model of a vehicle with non-linear control. We proposed and

evaluated an instance-based learning approach based on the
fact that the behavior of a vehicle on different roads has
a high correlation. This approach adopts the performance
model for a different road that is similar to the current road,
and update it according to an update rule. We compared this
approach to artificial neural networks that are pre-trained on
the same reference road. An exploration strategy based on
the principle of least effort was proposed to speed up the
learning process. Our experiments showed that the instance-
based learning approach has a higher rate of convergence to
the true performance model than ANNs. However, the ANN
approach, when paired with the min-distance exploration
strategy, performed best in our planning problems that aim to
satisfy the arrival time and arrival velocity requirements. In
the future, we will examine other methods such as Gaussian
processes to facilitate the learning process.

ACKNOWLEDGMENTS

This work has taken place in the ART Lab at Ulsan Na-
tional Institute of Science & Technology (UNIST). ART re-
search is supported by NRF (2.170415.01 and 2.170511.01).

REFERENCES

[1] T.-C. Au, M. Quinlan, and P. Stone, “Setpoint scheduling for au-
tonomous vehicle controllers,” in IEEE International Conference on
Robotics and Automation (ICRA), 2012, pp. 2055–2060.

[2] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” Journal of Artificial Intelligence Research
(JAIR), March 2008.

[3] P. MacAlpine, E. Price, and P. Stone, “Scram: Scalable collision-
avoiding role assignment with minimal-makespan for formational
positioning,” in Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2015.

[4] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive Processing, vol. 12, no. 4, pp. 319–340, 2011.

[5] D. R. Drew, “Traffic flow theory and control,” Tech. Rep., 1968.
[Online]. Available: http://trid.trb.org/view.aspx?id=115219

[6] G. H. Bham and R. F. Benekohal, “Development, evaluation, and
comparison of acceleration models,” in 81st Annual Meeting of the
Transportation Research Board, Washington, DC, 2002.

[7] H. Rakha, I. Lucic, S. H. Demarchi, J. R. Setti, and M. V. Aerde,
“Vehicle dynamics model for predicting maximum truck acceleration
levels,” Journal of transportation engineering, vol. 127, no. 5, pp.
418–425, 2001. [Online]. Available: http://ascelibrary.org/doi/abs/10.
1061/(ASCE)0733-947X(2001)127:5(418)

[8] J. Searle, “Equations for Speed, Time and Distance for Vehicles
Under Maximum Acceleration,” SAE Technical Paper, Tech. Rep.,
1999. [Online]. Available: http://papers.sae.org/1999-01-0078/

[9] Y. U. Yim and S.-Y. Oh, “Modeling of vehicle dynamics from
real vehicle measurements using a neural network with two-
stage hybrid learning for accurate long-term prediction,” Vehicular
Technology, IEEE Transactions on, vol. 53, no. 4, pp. 1076–1084,
2004. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=1317211

[10] J. Park, D. Li, Y. L. Murphey, J. Kristinsson, R. McGee, M. Kuang, and
T. Phillips, “Real time vehicle speed prediction using a neural network
traffic model,” in Neural Networks (IJCNN), The 2011 International
Joint Conference on. IEEE, 2011, pp. 2991–2996. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6033614

[11] T.-C. Au and P. Stone, “Motion planning algorithms for autonomous
intersection management,” in AAAI 2010 Workshop on Bridging The
Gap Between Task And Motion Planning (BTAMP), 2010.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323, pp. 533–
536, 1986.

[13] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. Rückstieß, and J. Schmidhuber, “Pybrain,” Journal of Machine
Learning Research, vol. 11, pp. 743–746, 2010.

