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Abstract— A fast algorithm for checking whether an au-
tonomous vehicle can arrive at a position at a given arrival time
and velocity is the key to Autonomous Intersection Management
(AIM). This paper presents a complete set of closed form
equations that fully describes the set of all reachable arrival
configurations in longitudinal motion planning if the vehicle’s
controller is a double integrator with bounded acceleration.
This result improves the running time of the algorithm for
checking the reachability of an arrival configuration from
logarithmic time to constant time. We also apply the result
to check the reachability in a segmented road and discuss how
the algorithm can be applied to real vehicles.

I. INTRODUCTION
Motion planning is PSPACE-hard in general [1], [2].

Hence, it is unlikely to find a complete algorithm that guar-
antees to find a solution in a reasonable time. Most practical
motion planning algorithms are sampling-based algorithms
that are incomplete (e.g., probabilistic roadmap methods
(PRM) [3] and rapidly-exploring random trees (RRT) [4]).
However, a guarantee in finding a motion plan if one exists
can be useful in certain applications. For example, Au and
Stone [5] showed that the ability for an autonomnous vehicle
to arrive at an intersection at a given time and velocity
is crucial to autonomous intersection management (AIM),
a new intersection control protocol that intends to replace
traffic signals when most vehicles are autonomous in the
future. More specifically, they showed that if vehicles can
determine their unreachability to arrive at an intersection at
a specific time and at a specific velocity as early as possible,
the efficiency of AIM can be greatly improved [6].

Deciding the existence or non-existence of a motion plan is
difficult because this often requires an exhaustive exploration
of the entire configuration space. An even more difficult
problem is to describe the set of all configurations in
a configuration space that are reachable by some motion
plans. Let us call a set of all reachable configurations a
reachable set. Computing reachable sets can be very useful
because a mathematical description of the set of all reachable
configurations eliminates the need to search for reachable
configurations to check the existence or non-existence of a
motion plan. Furthermore, if we can describe a reachable set
geometrically in a configuration space by a set of closed-
form equations, we can perform geometrical operations on
the entire set of reachable configurations, such as checking
whether two reachable sets intersect. However, it is not easy
to come up with these equations because, apart from the fact
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that the equations can be quite complicated, the “shape” of
a reachable set also depends on parameters in the planning
problem. Different parameter values can lead to different
reachable sets whose equations are totally different, and there
can be potentially an infinite number of possible values of
the parameters in a planning problem.

In this paper, we address this challenge and provide a
complete set of equations describing the set of all possible
arrival configurations when controlling an autonomous vehi-
cle to arrive at a specific position on a trajectory. Here the
configuration space is the pairs of arrival time and arrival
velocity at the destination. The immediate corollary of this
result is the reduction of the running time of the algorithm
for checking the reachability of an arrival configuration
from logarithmic time [7] to constant time. This speed
improvement is important because this checking procedure is
repeatedly run every few milliseconds to check whether the
arrival time and velocity to an intersection remains reachable.
If the arrival time and velocity becomes unreachable due
to the control noise when driving on a bumpy road, the
vehicle should not enter the intersection to avoid collision.
A constant time algorithm allows a much higher frequency
of checking, thus enhancing safety. The algorithm can also
be extended to deal with multiple road segments, unlike the
previous algorithm that only works for one road segment.

Some previous motion planning algorithms are also
based on reachable sets for autonomous vehicles [8], robot
arms [9], and humanoid robots [10]. Among these works,
few consider meeting both time and velocity objectives
simultaneously. One of these works is the path-velocity-time
planner proposed by Johnson and Hauser, which computes a
reachable set that denotes the range of reachable velocities
after the vehicle travels for a specific time in longitudinal
motion [8], [11]. However, their works are different from
ours since their algorithm (more specifically, the velocity
interval propagation subroutine) assumes the arrival times are
fixed and outputs a range of target velocities reachable from
an initial point (p0, t0) to a target point (p f , t f ) in a path-time
(PT) plane. Notice that a reachable set of velocities in PVT
diagrams (positions, velocity, and time) in [8] is different
from a reachable set of time-velocity pairs in VT diagrams
(velocity and time). Unlike reachable sets of velocities in
PVT diagrams, reachable sets of time-velocity pairs are
usually non-convex and hence they are far more complicated
than the reachable sets in [8]. Since the arrival times are
fixed, the planners based on the reachable sets defined in [8]
and [11] cannot directly be used to solve our problem.



II. RELATED WORK

Recent work on motion planning focuses on planning
in limited domains or exploiting the problem structure.
Švestka and Vleugels [12] gave an exact motion planning
algorithm for tractor-trailer robot in the absence of obstacles.
Halperin [13] concerns with the geometric algorithms for
robust primitives for complete motion planning. Varadhan et
al. [14] described a complete algorithm for motion planning
of translating polyhedral robots in 3D. Most of these planners
concern with checking whether a robot can arrive at a
position with a correct final orientation. However, since
these algorithms aims to solve motion planning problems
in general, they run in exponential time in the worst cases.

Probabilistic roadmap methods (PRM) [3] and rapidly-
exploring random trees [15] are both widely used, sampling-
based algorithms. While these algorithms are probabilisti-
cally complete under very general conditions [4], they are
actually incomplete algorithms because there is no guar-
antee that they find a solution if one exists. Hirsch and
Halperin [16] proposed a hybrid motion planner that gener-
ates complete solutions with PRM. However, these modified
algorithms suffer from inefficiency due to their completeness.

Longitudinal control of autonomous/semi-autonomous ve-
hicles has been widely studied since the 1960’s, in particular
in platooning in automated highway systems [17]. These
studies mainly focus on car following in a platoon [18], but
our approach is more suitable for point following [19]. Most
work on motion planning for autonomous vehicles (e.g.,
[20]) treated the arrival time and velocity requirements as
secondary. But finding optimal arrival times and velocities
is an important issue in some applications [5], [6]. Au and
Stone studied the longitudinal control problem on real vehi-
cles [7], but they assumed that the maximum and minimum
accelerations remain constant all the time [5].

Some previous works on motion planning focus exclu-
sively one-dimensional trajectories. For example, Bobrow et
al. [21] dealt with the minimum-time manipulator control
problem, which is about controlling a robot manipulator to
move along a specified path in a time-optimal manner, sub-
ject to the actuator torque constraints. Kunz and Stilman [22]
dealt with a similar problem using the same approach with a
path preprocessing step. Some general-purpose motion plan-
ners are capable of satisfying both the arrival time and arrival
velocity requirements. For example, Johnson and Hauser [8]
presented a polynomial-time, complete planner that computes
collision-free, time-optimal, longitudinal control sequences
for meeting arrival time and velocity requirements, via the
computation of the reachable sets in the path-velocity-time
space. As discussed in Section I, their problem as well as
their solutions are different from ours as velocity interval
propagation in their works assumes arrival times are fixed,
and their planner has to enumerate arrival times using the
problem structure. By contrast, we directly compute the
reachable sets of both arrival times and arrival velocities
simultaneously. Johnson and Hauser [11] improved their
previous work by allowing non-rectangular obstacles in
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Fig. 1. The longitudinal motion planning problem

position-velocity-time space. [23] and [24] also considered
the computation of reachable sets for double integrators for
motion planning for manipulators.

III. LONGITUDINAL MOTION PLANNING

We define our problem as a longitudinal motion planning
problem of autonomous vehicles, even though our problem
formulation is applicable to any motion planning of mobile
robots on 1-D trajectories. In Fig. 1, a vehicle is located
at the starting position at time t0 = 0 and has an initial
velocity v0. Our objective is to control the vehicle to reach
the destination (the ”End” sign) at a given arrival time tend
and at a given arrival velocity vend, subject to the speed
limits and the vehicle’s acceleration constraints. The distance
between the starting position and the destination is D. Let
vmax be the speed limit such that the velocity of the vehicle
cannot exceed vmax at any point in time. Let amax and amin

be the absolute values of the maximum acceleration and the
maximum deceleration, respectively, such that the vehicle
cannot accelerate more than amax or decelerate more than
amin at any point on the road.

We define 1) the initial configuration as (t0,v0),
2) the arrival configuration as (tend,vend), and 3) the
road configuration as (D,amax,amin,vmax). A longitu-
dinal motion planning problem Pvalid is a 3-tuple
〈(t0,v0),(tend,vend),(D,amax,amin,vmax)〉, where t0 = 0, 0 ≤
v0 ≤ vmax, 0 < tend, 0≤ vend ≤ vmax, 0 < D, amax ≥ 0, amin ≥
0, and 0< vmax. Our task is to generate a sequence of control
signals such that if the vehicle follows the sequence exactly,
it will reach the destination while satisfying all requirements
and constraints. There are many different type of vehicle
controllers, but for velocity-based controllers, the sequence
of control signals is a velocity function v(·), such that the
controller will set the velocity of the vehicle according to v(·)
over time. We are only interested in non-negative velocity
functions because we forbid a vehicle to move backward. We
say v(·) is reachable if it satisfies the following constraints:
C1) v(t0) = v(0) = v0;
C2) v(tend) = vend;
C3) 0≤ v(t)≤ vmax for t0 ≤ t < tend (i.e., the velocity cannot

exceed the speed limit or be negative at any point in
time);

C4)
∫ tend

t0 v(t)dt = D (i.e., the distance traveled must be Di);
and
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Fig. 2. The four canonical velocity functions.

C5) −amin ≤ v′(t−) ≤ amax and −amin ≤ v′(t+) ≤ amax,
where v′(t−) is the left derivative of v(·) at t, v′(t+)
is the right derivative of v(·) at t, and t0 < t < tend (i.e.,
the acceleration and the deceleration must be within the
limitations when moving on the road).

The objective of a longitudinal motion planning problem
Pvalid is to check whether a reachable velocity function
v(·) exists. In other words, Pvalid is called an instance of
the validation problem, in which we want to validate the
given arrival configuration (tend,vend) by checking whether
(tend,vend) is reachable by a reachable velocity function.

IV. REACHABLE SETS
Let us first consider the case of one road segment: given an

initial configuration (t0,v0) and a road segment configuration
(D,amax,amin,vmax), we want to find the set F of all reach-
able arrival configurations. We simply call F a reachable
set. Previously, Au and Stone have provided a validation
procedure for problems with exactly one road segment [5].
However, their algorithm can only check whether the arrival
configuration is a member of the reachable set. By contrast,
we want to find not just one but all members in F . Nonethe-
less, Au and Stone provided a hint for us to construct a reach-
able set [5]. Fig. 2 shows four velocity functions: v̄UU (t;vint),
v̄DU (t;vint), v̄UD(t;vint), and v̄DD(t;vint). We will call them
canonical velocity functions. v̄UD(t;vint) is also called an
“up-down” velocity function, which instructs the vehicle to
immediately accelerate to an intermediate velocity vint at t0
using the maximum acceleration amax, and then maintain the
velocity at vint until the last moment at which the vehicle can
decelerate using amin to reach the destination at the given
tend and vend. Likewise, each of v̄UU (t;vint), v̄DU (t;vint),
and v̄DD(t;vint) has one parameter—the intermediate velocity
vint—and will instruct the vehicle to accelerate or decelerate
to vint and maintain the speed as long as possible. These
canonical functions are significant due to Theorem 1.

Theorem 1: If a reachable velocity function v(·) exists for
a validation problem with one road segment only, there exists
a canonical velocity function v̄(·;vint) for some intermediate
velocity vint such that v̄(·;vint) is also reachable.
An informal proof of Theorem 1 is given in [5], though [5]
has not stated this theorem formally. The theorem implies
that there is no need to check all possible reachable veloc-
ity functions in the validation problem—it is sufficient to

Fig. 3. The reachable set F = (FUU ∪FUD ∪FDU ∪FDD).
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Fig. 4. Special values that dictates the boundary of F .

check whether one of the four canonical velocity functions
exists and is reachable. This result significantly reduces the
complexity of the validation problem, as discussed in [5].

First of all, we identify some interesting structures in the
reachable set based on Theorem 1. Let FUU be the reachable
set of arrival configurations that are reachable by using
v̄UU (t;vint) only. Similarly, let FUD, FDU, and FDD be the
reachable sets using v̄UD(t;vint), v̄DU (t;vint), and v̄DD(t;vint),
respectively. Theorem 1 infers that F is the union of the four
reachable sets: F = (FUU∪FUD∪FDU∪FDD).

Fig. 3 is a time-velocity diagram showing the reachable
set F when v0 = 5m/s, tend = 40s, D = 120m, amin = 1m/s2,
amax = 0.6m/s2, and vmax = 15m/s. As can be seen, F can
be divided into four regions: FUU, FUD, FDU, and FDD. All
four regions meet at a point P5, which is reachable by a
constant velocity function v(t) = 5 for 24s. P5 exists as long
as v0 > 0; when v0 = 0, the vehicle cannot start to decelerate
as negative velocity is prohibited, and FDU and FDD do not
exist. Lines L6, L7, L8 and L9, which radiate from P5, are
sets of arrival configurations shared by the adjacent reachable
sets. FUU, FUD, FDU, and FDD overlap only on these lines.
For example, FUU

⋂
FDU = L6. The interiors of FUU, FUD,

FDU, and FDD, together with L6, L7, L8, and L9, form a
subdivision of F .

We are interested in the boundary of F , which encloses all
sets of reachable configurations. The fact that the boundary
of F is a combination of some boundaries of FUU, FUD,
FDU, and FDD can be used to deduce the closed-form ex-
pressions of the set of equations describing the boundary
of F . However, the shape of F depends on the initial
configuration and the road segment configuration, and in
some cases F is infinite. It is necessary to enumerate all
possible cases in which the set of equations differ from
each other. Let consider the following four areas that are
visualized in Fig. 4:
• AreaL is the distance the vehicle travels from v0 with a

deceleration of amin until a complete stop;
• AreaR is the distance the vehicle travels from a complete

stop with an acceleration of amax until it hits the speed
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Fig. 5. The upper boundaries and the lower boundaries of the reachable
sets in seven different cases.

limit vmax;
• AreaU is the distance the vehicle travels from v0 with an

acceleration of amax until it hits the speed limit vmax; and
• AreaQ is the distance the vehicle travels from vmax with

a deceleration of amin until a complete stop.
It turns out that these values play a critical role in

identifying different cases as their combinations serve as
interval values that shape the set of all reachable points of
each canonical velocity function. For example, if the road
distance D is less that AreaL, there is no reachable velocity
function v̄DU (t;vint) that can end up with the arrival velocity
vend = 0. Similarly, AreaU is the minimum value of the road
segment such that there exists a velocity function v̄UD(t;vint)
ending up with the arrival velocity vend = vmax. Likewise,
AreaL+AreaR is the lower bound condition for the existence
of v̄UD(t;0) ending at vend = vmax, and AreaU + AreaQ is
the lower bound condition for the existence of v̄UD(t;vmax)
ending at vend = 0.

We need to identify all possible relationships between
D, AreaL, AreaU , AreaL + AreaR and AreaU + AreaQ. In
general, the number of possible ways to compare the 5
values is 5! = 120. Fortunately, from Fig. 4 we identify
some additional relationships among those four values: 1)
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Fig. 6. The equations in Fig. 5.

AreaL ≤ AreaL + AreaR; 2) AreaU ≤ AreaU + AreaQ; 3)
AreaL ≤ AreaQ ≤ AreaU +AreaQ; and 4) AreaU ≤ AreaR ≤
AreaL+AreaR. Basically, these relationships imply that both
AreaL and AreaU are less than or equal to AreaL+AreaR and
AreaU +AreaQ. This helps us reduce the number of different
cases to seven:
• Case 1: D≤ AreaL and D≤ AreaU ;
• Case 2: D≤ AreaL and D≥ AreaU ;
• Case 3: D≥ AreaL and D≤ AreaU ;
• Case 4: D≥max{AreaL, AreaU}

and D≤min{AreaL +AreaR, AreaU +AreaQ};
• Case 5: D≥ AreaL +AreaR and D≤ AreaU +AreaQ;
• Case 6: D≤ AreaL+AreaR and D≥ AreaU +AreaQ; and
• Case 7: D≥max{AreaL +AreaR, AreaU +AreaQ}.

We derived the equations for the upper bound Ωupper(t) and
the lower bound Ωlower(t) of the reachable set in these seven
cases. These equations, shown in Fig. 5 and 6, are inferred
from an analysis of the aforementioned canonical velocity
functions, but due to the lack of space we omit the analysis.

V. IMPROVED VALIDATION ALGORITHMS

This section discusses two applications in which the exact
equations of reachable sets are useful.

A. A Constant-Time Algorithm for the Validation Problem

Given a road segment’s configuration (D,amax,amin,vmax),
an initial configuration (t0,v0), and an arrival configuration
(tend,vend), we can use the tables in Fig. 5 to check whether
(tend,vend) is reachable in constant time, which is faster than
the bisection method proposed in [7]. First, we determine
which case it belongs to and find the equations of Ωupper(t)
and Ωlower(t) in the tables in Fig. 5 and 6. For instance, take
a look at the example in Fig. 3. We have AreaL =

v2
0

2amin
=



12.5m; AreaR = v2
max

2amax
= 187.5m; AreaQ = v2

max
2amin

= 112.5m;

and AreaU =
v2
max−v2

0
2vmax

= 166.7m. Hence this is Case 3 since
D≥ AreaL and D≤ AreaU . The equation of the upper bound
is

Ω
upper(t) =

 undefined if t < 13.3
g1(t) if 13.3≤ t ≤ 23.9
11.4 if 23.9≤ t

where g1(t) = 5− t +
√

1.6t2−16t +384. This corresponds
to L1 and L2 in Fig.3. We also have

Ω
lower(t) =

 undefined if t < 13.3
g2(t) if 13.3≤ t ≤ 19.1
0 if 19.1≤ t

where g2(t) = 5 + 0.6t −
√

0.96t2 +16t−384. This corre-
sponds to L3 and L4 ∪ L5 in Fig. 3.

Second, since all reachable configurations are enclosed be-
tween Ωupper(t) and Ωlower(t), we can plug tend into Ωupper(t)
and Ωlower(t) to compute the valid range of vend. For exam-
ple, if tend = 18 and vend = 5, Ωlower(tend) = g2(tend) = 1.14
and Ωupper(tend) = g1(tend) = 11.79, and hence the arrival
configuration (18,5) is reachable. In short, (tend,vend) is
reachable if and only if Ωlower(tend) ≤ vend ≤ Ωupper(tend).
The running time for checking this condition is O(1).

B. Validation for Two Road Segments

When the road segment before an intersection is too short,
a vehicle may have to start validating the reachability of the
arrival time and velocity on the previous road segment. Let
us consider the validation for two consecutive road segments.
Suppose a road consists of two segments R1 and R2. Let F1
be the set of all reachable configurations at the end of the
first road segment R1 given that the initial configuration is
(t0, v0). Let F ′2 be the set of all starting configurations at the
beginning of the second road segment R2 from which there
exists a velocity function to reach the end of the second road
segment with the arrival configuration (tend,vend).

Theorem 2: Given two road segments R1 and R2, a reach-
able velocity function exists if and only if F1 intersects F ′2
(i.e., F1∩F ′2 6= /0).
Fig. 7 gives an example showing the intersection of F1 and
F ′2. Here is the reason why this theorem is correct: if F1
intersects with F ′2, we can pick one point (t ′,v′) in (F1∩F ′2)
and construct a reachable velocity function by connecting
(0, t1) to (tend,vend) via (t ′,v′) using two velocity functions
(e.g., find two canonical velocity functions, one connecting
(0, t1) to (t ′,v′) and the other connecting (t ′,v′) to (tend,vend),
using the method outlined in in [5]). If F1 does not intersect
F ′2, there is no reachable velocity function that can connect
(0, t1) to (tend,vend), because F1 and F ′2 are complete sets of
reachable configurations—all configurations outside F1 or F ′2
are not reachable from (0, t1) or (tend,vend), respectively.

The boundary of F ′2 can be computed by assuming the
vehicle is moving backward in time from the destination to
the beginning of R2. First, set the initial configuration to
(0,vend) and swap the roles of amax and amin. Second, obtain
the boundaries of F ′′2 from the tables in Fig. 5. Third, replace

Fig. 7. Reachable sets for two segments.

t with tend− t in the equations of the boundaries of F ′′2 to
obtain a new set of equations of the boundaries of F ′2.

Let Ω
upper
1 (t) and Ωlower

1 (t) be the upper bound and the
lower bound of F1, respectively. Let Ω

upper
2 (t) and Ωlower

2 (t)
be the upper bound and the lower bound of F ′2, respectively.
F1 and F ′2 can intersect only in one of the following ways:
either 1) one of them is enclosed entirely in another, or 2)
their boundaries intersect. In the former case, we can simply
pick one point in F1 and check whether it is bounded between
Ω

upper
2 (t) and Ωlower

2 (t). If not, pick another point in F2 and
check whether it is bounded between Ω

upper
1 (t) and Ωlower

1 (t).
In the latter case, we need to find an intersection point

at t such that either Ω
upper
1 (t) = Ω

upper
2 (t), Ω

upper
1 (t) =

Ωlower
2 (t), Ωlower

1 (t) = Ω
upper
2 (t), or Ωlower

1 (t) = Ωlower
2 (t). If

we do not need to construct a reachable velocity func-
tion, we can check the existence of an intersection point
non-constructively using the intermediate value theorem:
check whether the end points of one of the following
equations have different sign: f1(t) = Ω

upper
1 (t)−Ω

upper
2 (t),

f2(t) = Ω
upper
1 (t)−Ωlower

2 (t), f3(t) = Ωlower
1 (t)−Ω

upper
2 (t),

and f4(t) = Ωlower
1 (t)−Ωlower

2 (t).
One way to find an intersection point is to find the

roots of f1(t), f2(t), f3(t), f4(t) using some numerical
algorithms such as Newton’s method. However, Newton’s
method converges under certain conditions. In general, if the
functions are monotonically decreasing functions, Newton’s
method will not get stuck at local minima and can converge
quickly. Theorem 3 shows that all Ωupper(t) and Ωlower(t) are
decreasing functions.

Theorem 3: Both Ωupper(t) and Ωlower(t) are decreasing
functions.

Since Ω
upper
1 (t) and Ωlower

1 (t) are decreasing while
Ω

upper
2 (t) and Ωlower

2 (t) are increasing (since the boundary
equations of F ′2 are reversed in time), f1(t), f2(t), f3(t) and
f4(t) are decreasing functions. However, these functions are
not necessarily monotonically decreasing, and the Newton’s
method needs to use some special procedures to handle the
situation in with the derivative is zero. This approach can
find the intersection points effectively.

VI. REACHABLE SETS FOR REAL VEHICLES

We also studied how to utilize reachable sets in the control
of a real vehicle. The computation of a reachable set is based
on a simplified vehicular model with bounded acceleration
and deceleration, but the actual behavior of a real vehicle
is more complicated than that, and hence the reachable set
of a real vehicle is different from the one in the tables in



Fig. 5. Nonetheless, the actual behavior will only impose
additional constraints to the computation of the reachable
set, and hence the reachable set of a real vehicle must be
a subset of a reachable set in the tables in Fig. 5. Thus,
the reachable sets as described in Fig. 5 are still useful in
identifying reachable arrival configurations and eliminating
arrival configurations that are impossible to reach.

To illustrate this usage, we conducted an experiment with
two road segments, one is a flat road and the other is a slope.
We want to control a physical vehicle to arrive at the top of
the slope at certain time and at certain velocity. The key
question is to find a suitable arrival time and velocity at the
junction of the two road segments. First, we used the tables
in Fig. 5 to compute a reachable “superset” at the junction,
based on the measurement of maximum acceleration and
deceleration. Then we randomly chose a configuration in
the superset and then used the bisection method in [7] to
check whether there is a setpoint schedule to control the
vehicle to arrive at the junction at the chosen configuration.
If not, then we chose another configuration in the superset
and tested again. Otherwise, we used the bisection method to
check whether it is possible to meet the arrival requirement
at the top of the slope starting from the chosen configuration.
We repeated the process until we find a configuration at
the junction such that reachable setpoint schedules exist
on both road segments. Then we controlled the vehicle to
run according to the two setpoint schedules, and measured
the errors in the arrival time and the arrival velocity. We
repeated the procedure 32 times with randomly chosen arrival
configurations at the top of the slope. The errors in the arrival
time and velocity are −1.42± 0.57s and −0.16± 0.16m/s,
respectively. These errors are probably due to the model error
in performance profiling of the vehicle, as well as the sudden
slowdown when the vehicle hit the slope at the junction. In
the future, we will investigate how to reduce these errors.

VII. SUMMARY AND DISCUSSION

In this paper, we considered the problem of deciding
whether a motion plan exists such that an autonomous
vehicle can arrive at a specific position on a trajectory at a
given time and velocity. Our main contribution is to improve
the running time of the validation algorithm in [7] from
logarithmic time to constant time. Our approach is based on
the computation of reachable sets describing all reachable
arrival configurations by closed form equations for any
parameters in the problem. To illustrate the usage of these
equations, we presented 1) a constant-time algorithm for the
validation problem, and 2) the validation procedure for two
road segments. We also discussed how these equations can be
useful when applying to real autonomous vehicles. AIM is an
important domain in which vehicles have to move to certain
positions with precision in time and velocity. Beyond AIM,
precision in time and velocity often plays a pivotal role for
a team of robots to collaborate effectively. In the future, we
will apply the equations in Fig. 5 to other motion planning
problems for autonomous vehicles and mobile robots.
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[3] L. E. Kavaki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, 1996.

[4] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept, Iowa State University, Tech. Rep.
TR 98-11, 1998.

[5] T.-C. Au and P. Stone, “Motion planning algorithms for autonomous
intersection management,” in AAAI 2010 Workshop on Bridging The
Gap Between Task And Motion Planning (BTAMP), 2010.

[6] M. Quinlan, T.-C. Au, J. Zhu, N. Stiurca, and P. Stone, “Bringing
simulation to life: A mixed reality autonomous intersection,” in IROS,
2010.

[7] T.-C. Au, M. Quinlan, and P. Stone, “Setpoint scheduling for au-
tonomous vehicle controllers,” in ICRA, 2012, pp. 2055–2060.

[8] J. Johnson and K. Hauser, “Optimal acceleration-bounded trajectory
planning in dynamic environments along a specified path,” in ICRA,
2012, pp. 2035–2041.

[9] T. McMahon, S. Thomas, and N. M. Amato, “Sampling based motion
planning with reachable volumes: Application to manipulators and
closed chain systems,” in IROS, 2014, pp. 3705–3712.

[10] N. Vahrenkamp, D. Berenson, T. Asfour, and J. K. R. Dillmann, “Hu-
manoid motion planning for dual-arm manipulation and re-grasping
tasks,” in IROS, 2009, pp. 2464–2470.

[11] J. Johnson and K. Hauser, “Optimal longitudinal control planning with
moving obstacles,” in IEEE Intelligent Vehicles Symposium, 2013, pp.
605–611.
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