

Sparse Models for Speech Recognition

Weibin Zhang and Pascale Fung

Human Language Technology Center Hong Kong University of Science and Technology

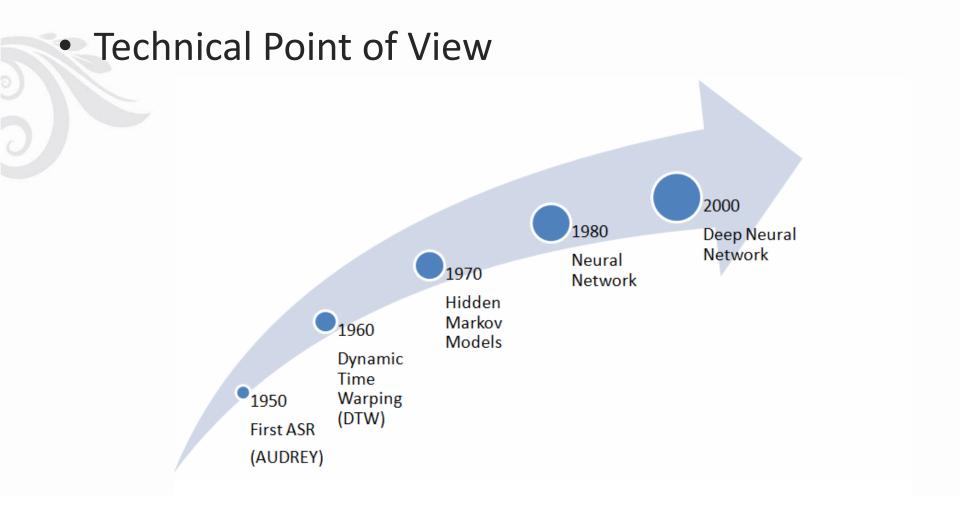
- Introduction to speech recognition
- Motivations for sparse models
- Maximum likelihood training of sparse models
- ML training of sparse banded models
- Discriminative training of sparse models
- Conclusions

Speech Recognition & its Applications

- 1. Automatic Speech Recognition (ASR):
 - Convert speech wave into text automatically
- 2. Applications:
 - Office/business systems:
 - Manufacturing
 - Telecommunications
 - Mobile telephony
 - Home Automation
 - Navigation

ECE/HKUST

History of ASR

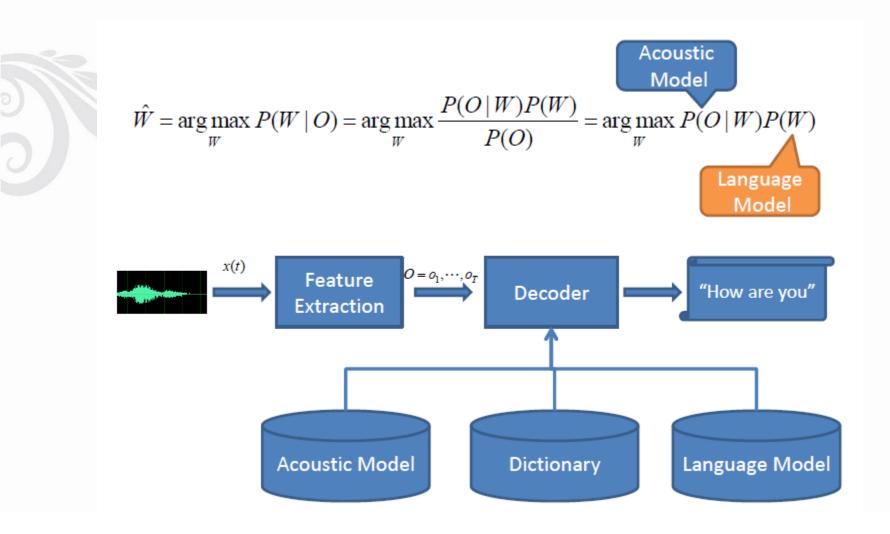


ASR Research -- Overview

- Statistical approaches lead in all area.
- Still big gap between human and machine performance...however
- Useful systems have been built which are changing the way we interact with the world

...within five years people will discard their keyboards and interact with computers using touch-screens and voice controls... Bill Gates, Feb 2008

Statistical speech recognition system



Statistical speech recognition system

• Language Model:

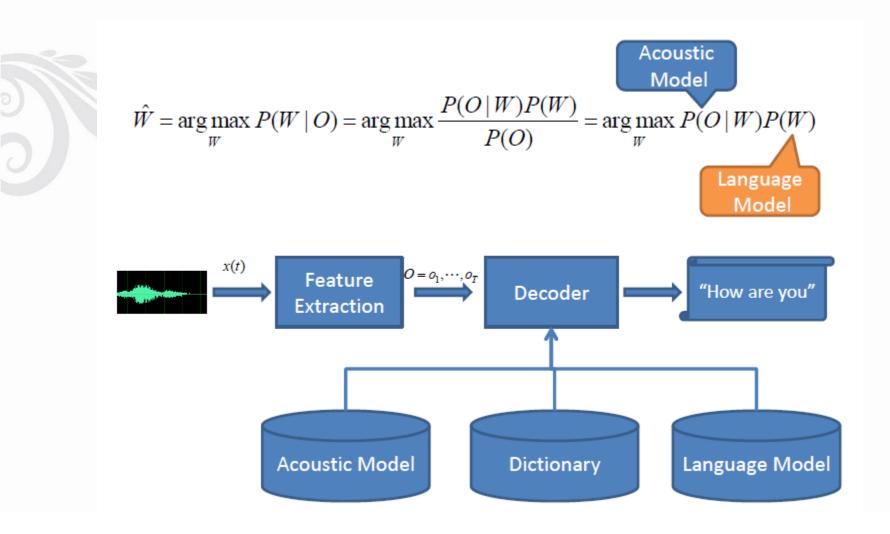
– P("recognize speech") >> P("wreck a nice beach")

• Dictionary:

- -Wreck r e k
- Beach b i th
- Acoustic Model:

– P(O|"recognize speech")

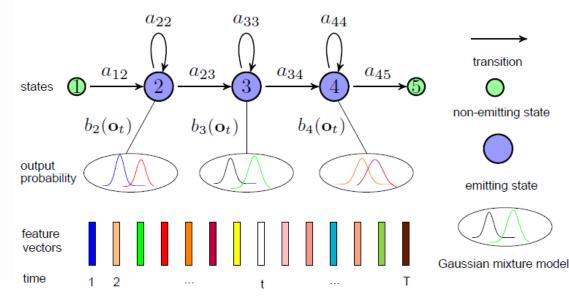
Statistical speech recognition system



Acoustic modeling

Left-to-right hidden Markov models (HMMs)

- GMM-HMM based acoustic models
- $p(\boldsymbol{o}_t|s_j) = \sum_m c_{jm} N(\boldsymbol{o}_t; \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$
- $\Theta = \{a_{ij}, b_j(\boldsymbol{o}_t)\} = \{a_{ij}, c_{jm}, \boldsymbol{u}_{jm}, \boldsymbol{\Sigma}_{jm}\}$



Evaluation of ASR system

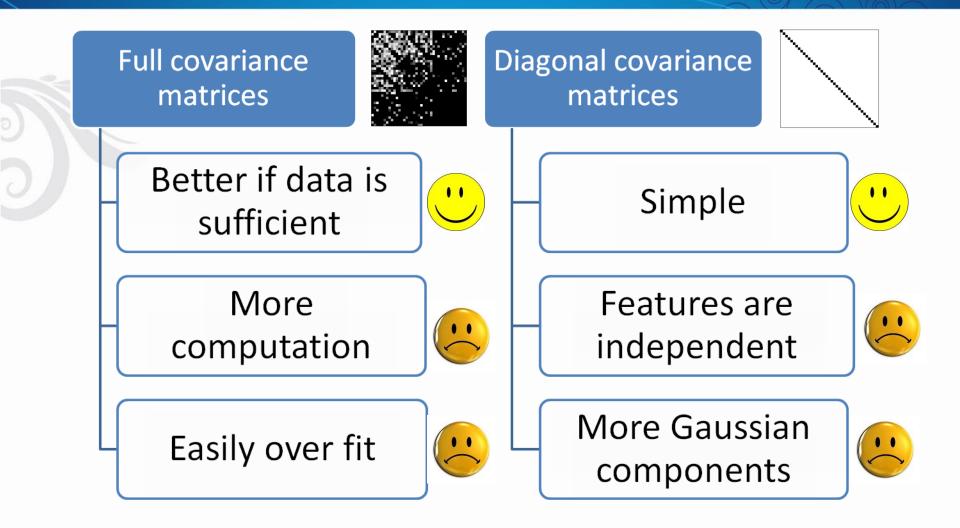
• Word error rate (WER) = 1 – accuracy

$$WER = \frac{S+D+I}{N}.$$

• Real time factor (RTF)

$$RTF = \frac{\text{decoding time}}{\text{duration of the utterance}}$$

Covariance modeling



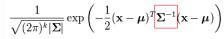
Covariance modeling

Sparse banded inverse covariance matrices (*sparse models*)

Alleviate over-fitting

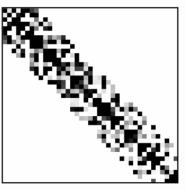
Less Training data

Less computation



Reasonable model assumption (decorrelated features)

parameter type	number of parameters	percentage
transitions	1100	~ 0
weights	5686	0.2
means	221,754	4.7
precision matrices	4,435,080	95.1
total	4,663,620	100



ML training of sparse models

Maximum likelihood (ML) training

$$\widehat{\boldsymbol{\Theta}} = \underset{\boldsymbol{\Theta}}{\operatorname{argmax}} \{ \log(P(\boldsymbol{O}|\boldsymbol{\Theta})) \}$$

• The proposed new objective function $L(\Theta) = \log(P(\Theta|\Theta)) - \sum_{i=2}^{S-1} \sum_{m=1}^{M} \rho ||\boldsymbol{C}_{im}||_{1}$

• Auxiliary function: $Q(\Theta; \Theta') = \sum_{q} \sum_{m} P(q, m | \Theta', O) \log(P(q, m, O | \Theta)) - \sum_{i=2}^{S-1} \sum_{m=1}^{M} \rho ||C_{im}||_{1}$

• Properties of the auxiliary function:

 $- L(\mathbf{\Theta}) - L(\mathbf{\Theta}') \ge Q(\mathbf{\Theta}; \mathbf{\Theta}') - Q(\mathbf{\Theta}'; \mathbf{\Theta}')$

Maximizing the auxiliary function

$$\max_{\boldsymbol{\Theta}} Q(\boldsymbol{\Theta}; \boldsymbol{\Theta}')$$

$$P(\boldsymbol{q}, \boldsymbol{m}, \boldsymbol{O} | \boldsymbol{\Theta}) = \prod_{t=1}^{T} a_{q_t q_{t+1}} c_{q_t m_t} b_{q_t m_t}(\boldsymbol{o}_t)$$

Forward and backward probabilities

Conditional independent assumptions of HMM

• The precision matrices can be updated using

$$\widehat{\boldsymbol{\mathcal{C}}}_{im} = \underset{\boldsymbol{\mathcal{C}}_{im} \geq 0}{\operatorname{argmax}} \{ \operatorname{logdet} \boldsymbol{\mathcal{C}}_{im} - \operatorname{trace}(\boldsymbol{\mathcal{S}}_{im} \boldsymbol{\mathcal{C}}_{im}) - \lambda || \boldsymbol{\mathcal{C}}_{im} ||_1 \}$$

- $-\lambda = \frac{2\rho}{\gamma_{im}}$ and S_{im} is the sample covariance matrix.
- Convex optimization or other more efficient methods (e.g. graphical lasso)

Experiments on the WSJ data

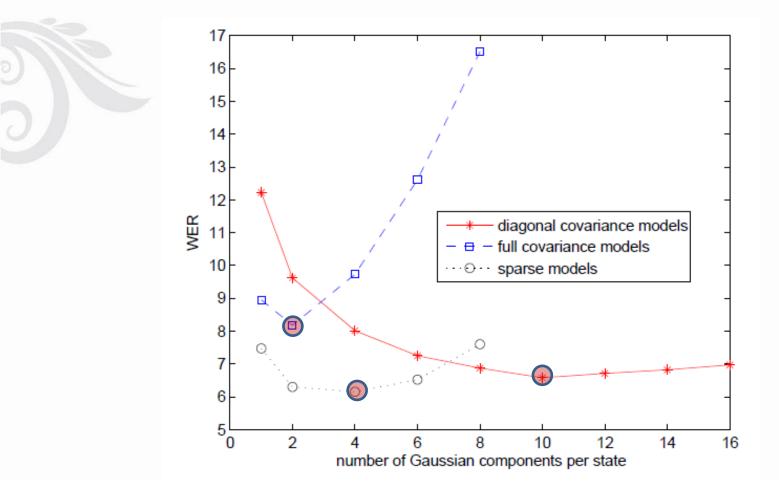
Experimental setup

Training, development and testing data sets

data set	#speakers	#utterances	hours	vocab size
train(si84)	83	7134	14.5	8914
dev(Nov'92)	10	205	0.67	1270
eval(Nov'93)	8	330	0.41	988

- Standard bigram language model
- Feature vector: 39-dimension MFCC
- 39 phonemes for English (39³ triphones)
- 2843 tied HMM states

Tuning results on the dev. data set

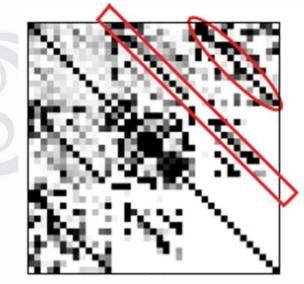


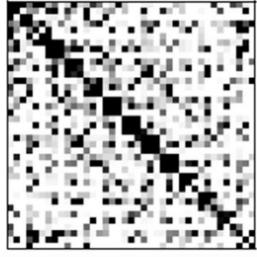
WER on the testing data set

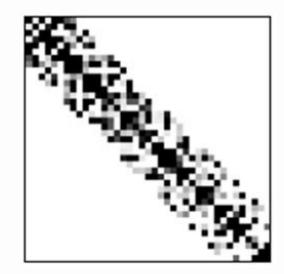
 Our result of 8.77% WER is comparable to the 8.6% WER reported in (Ko & Mak, 2011) using a similar testing configuration, but using 70 hours of training data

Model type	#Gaussians	WER	Rel. improv.	Significant?
Full	2	10.5	-7.1	No
Diagonal	10	9.84		
Sparse	4	8.77	10.9%	Yes

Sparse banded models





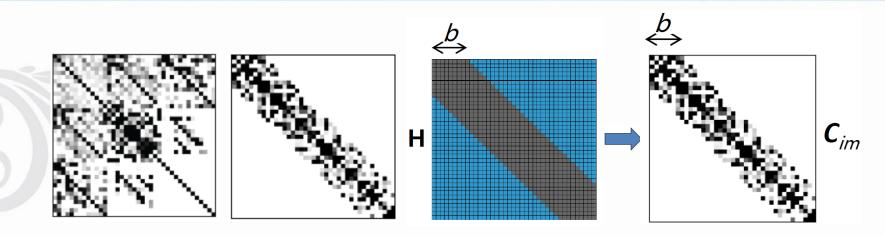


Sparse models

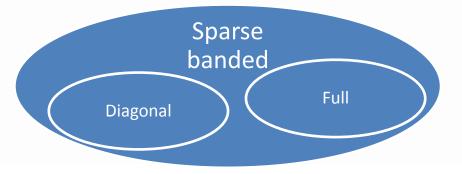
Sparse models Spars feature reorder m

Sparse banded models

Training of sparse banded models



- Weighted lasso: $f(\boldsymbol{C}_{im}) = -\|\boldsymbol{H} * \boldsymbol{C}_{im}\|_1$
- $H(k,l) = \infty \Longrightarrow C_{im}(k,l) = 0$



Importance of the feature order

- $O \sim N(\mu, \Sigma)$; $C = \Sigma^{-1}$; $C_{ij} = 0 \implies o_i$ and o_j are conditionally independent (CI), given other variables.
- Rearrange the feature order so that o_i and o_j are CI if |i j| > b
- Three orders are investigated:
 - HTK order : $m_1 \cdots m_{13} \Delta m_1 \cdots \Delta m_{13} \Delta \Delta m_1 \cdots \Delta \Delta m_{13}$
 - Knowledge-based order : $m_1 \Delta m_1 \Delta \Delta m_1 \cdots m_{13} \Delta m_{13} \Delta \Delta m_{13}$
 - Data-driven order : $m_1 \Delta \Delta m_1 \cdots \Delta m_6 \Delta m_{10}$

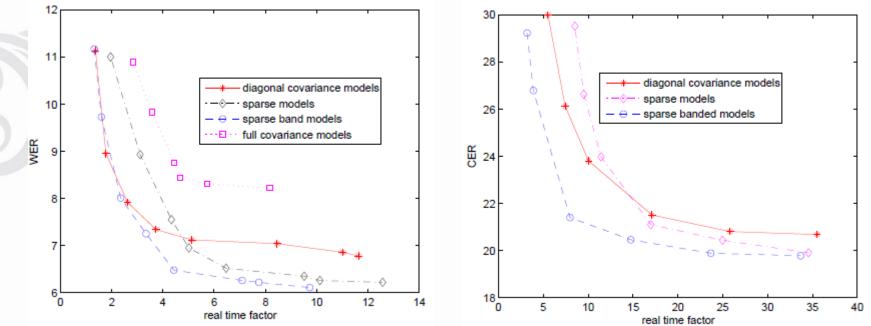
Results on the development data



Results on the test data

Model type	#Gaussians	WER	Rel. improv.	Significant?
Full	2	10.5	-7.1	No
Diagonal	10	9.84		
Sparse	4	8.77	10.9%	Yes
Band8	4	8.91	9.5	Yes

Decoding time



• Sparse banded modes are the fastest since: 1) smaller searching beamwidths; 2) less model parameters.

Model	#Gaussian components	#total model parameters
diagonal	10	2,491,090
full	1	2,580,719
sparse	2	5,169,440
band8	2	2,041,898

Discriminative training

MMI objective function: $\widehat{\Theta} = Argmax\{\log P(\boldsymbol{w}_r | \boldsymbol{O}, \boldsymbol{\Theta})\}$ New Objective function $L(\boldsymbol{\Theta}) = \log P(\boldsymbol{w}_r | \boldsymbol{O}, \boldsymbol{\Theta}) - \sum_{i=2}^{S-1} \sum_{m=1}^{M} \rho ||\boldsymbol{C}_{im}||_1$ • A valid weak-sense auxiliary function is $Q(\Theta; \Theta') = Q^n(\Theta; \Theta') - Q^d(\Theta; \Theta')$ Same as ML training $+Q^{s}(\Theta; \Theta')$ Ensure stability $+0^{I}(\Theta; \Theta')$ Improve generalization $-\sum_{i=2}^{S-1}\sum_{m=1}^{M}\rho||\boldsymbol{C}_{im}||_{1}$ **Regularization term**

Results on the WSJ testing data

Model type	#Gaussians	ML training	MMI
Full	2	11.68	9.18
Diagonal	10	9.84	9.04
Diagonal+ STC	10	9.26	8.66
Sparse	4	8.55	8.05

- Sparse models are effective in dealing with the problems that conventional diagonal and full covariance models face: computation, incorrect model assumptions and over-fitting when training data is insufficient.
- We derive the overall training process under the HMM framework using both maximum likelihood training and discriminative training.
- The proposed sparse models subsume the traditional diagonal and full covariance models as special cases.

Thank you!