M 340L - CS

Homew ork Set 5

1. Either show that the vectors $\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ -8\end{array}\right],\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$ are linearly independent or express one as a linear combination of the others.

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
2 & 0 & 3 \\
3 & -8 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
3 & -8 & -1 \\
2 & 0 & 3 \\
0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
3 & -8 & -1 \\
0 & 16 / 3 & 11 / 3 \\
0 & 0 & 1
\end{array}\right] . \text { The vectors are linearly }
$$

independent.
2. Either show that the columns of the matrix $\left[\begin{array}{ccc}-4 & -3 & 0 \\ 0 & -1 & 5 \\ 1 & 2 & -5 \\ 2 & 1 & -10\end{array}\right]$ are linearly independent or find a solution to the homogeneous problem.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 5 \\
1 & 2 & -5 \\
2 & 1 & -10
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 5 \\
0 & 5 / 4 & -5 \\
0 & -1 / 2 & -10
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 5 \\
0 & 5 / 4 & -5 \\
0 & -1 / 2 & -10
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 5 \\
0 & 0 & 5 / 4 \\
0 & 0 & -25 / 2
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 5 \\
0 & 0 & 5 / 4 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The columns of the matrix are linearly independent.
3. Either show that the columns of the matrix $\left[\begin{array}{cccc}1 & -2 & 3 & 2 \\ -2 & 4 & -6 & 2 \\ 0 & 1 & -1 & 3\end{array}\right]$ are linearly independent or find a solution to the homogeneous problem.

$$
\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
-2 & 4 & -6 & 2 \\
0 & 1 & -1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 0 & 0 & 6 \\
0 & 1 & -1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 1 & -1 & 3 \\
0 & 0 & 0 & 6
\end{array}\right] \text {. The columns of the matrix }
$$

are not linearly independent and a solution to the homogeneous problem is
$x_{4}=\frac{0}{6}=0, x_{3}$ is free - we take

$$
x_{3}=1, x_{2}=\frac{0-(-1) \cdot 1-3 \cdot 0}{1}=1, x_{1}=\frac{0-(-2) \cdot 1-3 \cdot 1-2 \cdot 0}{1}=-1 .
$$

4. Find the inverses of these matrices if they exist:
a. $\left[\begin{array}{ll}2 & 4 \\ 4 & 6\end{array}\right]$

We need to solve the systems $\left[\begin{array}{ll}2 & 4 \\ 4 & 6\end{array}\right]\left[\begin{array}{l}x_{11} \\ x_{21}\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{ll}2 & 4 \\ 4 & 6\end{array}\right]\left[\begin{array}{l}x_{12} \\ x_{22}\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ for the columns of the inverse matrix $\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]$. We transform
$\left[\begin{array}{cccc}2 & 4 & 1 & 0 \\ 4 & 6 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccc}2 & 4 & 1 & 0 \\ 0 & -2 & -2 & 1\end{array}\right]$ and solve
$x_{21}=\frac{-2}{-2}=1, x_{11}=\frac{1-4 \cdot 1}{2}=-3 / 2, x_{22}=\frac{1}{-2}=-1 / 2, x_{11}=\frac{0-4 \cdot(-1 / 2)}{2}=1$. We get
$\left[\begin{array}{ll}2 & 4 \\ 4 & 6\end{array}\right]^{-1}=\left[\begin{array}{cc}-3 / 2 & 1 \\ 1 & -1 / 2\end{array}\right]$.
b. $\left[\begin{array}{ccc}1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4\end{array}\right]$

We need to solve the systems $\left[\begin{array}{ccc}1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4\end{array}\right]\left[\begin{array}{l}x_{11} \\ x_{21} \\ x_{31}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{ccc}1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4\end{array}\right]\left[\begin{array}{l}x_{12} \\ x_{22} \\ x_{32}\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$,

$$
\text { and }\left[\begin{array}{ccc}
1 & 2 & -1 \\
-4 & -7 & 3 \\
-2 & -6 & 4
\end{array}\right]\left[\begin{array}{l}
x_{13} \\
x_{23} \\
x_{33}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { for the columns of the inverse matrix }\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right] \text {. }
$$

We transform
$\left[\begin{array}{cccccc}1 & 2 & -1 & 1 & 0 & 0 \\ -4 & -7 & 3 & 0 & 1 & 0 \\ -2 & -6 & 4 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 2 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 4 & 1 & 0 \\ 0 & -2 & 2 & 2 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 2 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 10 & 2 & 1\end{array}\right]$ and see
that the system matrix has linearly dependent columns and thus no inverse exists.
5. Use the inverse found in Exercise 4a to solve the system

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 4 \\
4 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]} \\
& \text { We have }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-3 / 2 & 1 \\
1 & -1 / 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-5 / 2 \\
3 / 2
\end{array}\right] .
\end{aligned}
$$

6. Mark each statement True or False. Supply a simple counterexample for each false statement.
a. If A is invertible, then the inverse of A^{-1} is A itself.

True. $\left(A^{-1}\right)^{-1}=A$.
b. A product of invertible $n \times n$ matrices is invertible, and the inverse of the product is the product of their inverses in the same order.

False. Let $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$, then $A B=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]$ so $(A B)^{-1}=\left[\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right]$ but $A^{-1}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right], B^{-1}=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$, so
$A^{-1} B^{-1}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -2 \\ -1 & 3\end{array}\right] \neq\left[\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right]$.

