M 340L-CS

Homework Set 10 Solutions

1. Let $u^{1}=\left[\begin{array}{c}3 \\ -3 \\ 0\end{array}\right], u^{2}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right], u^{3}=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right], b=\left[\begin{array}{c}5 \\ -3 \\ 1\end{array}\right]$.
a. Form the matrix $U=\left[\begin{array}{lll}u^{1} & u^{2} & u^{3}\end{array}\right]$ and confirm that the columns of U are orthogonal by computing $U^{T} U$.

$$
U=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-3 & 2 & 1 \\
0 & -1 & 4
\end{array}\right], U^{T} U=\left[\begin{array}{ccc}
3 & -3 & 0 \\
2 & 2 & -1 \\
1 & 1 & 4
\end{array}\right]\left[\begin{array}{ccc}
3 & 2 & 1 \\
-3 & 2 & 1 \\
0 & -1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
18 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 18
\end{array}\right] \text { which is diagonal so }
$$

the columns of U are orthogonal.
b. Express b as a linear combination of u^{1}, u^{2} and u^{3}. (That is, solve $U x=b$.)

$$
\begin{aligned}
& \text { If } U x=b \text {, then } U^{T} U x=U^{T} b \text {, so }\left[\begin{array}{ccc}
18 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 18
\end{array}\right] x=\left[\begin{array}{ccc}
3 & -3 & 0 \\
2 & 2 & -1 \\
1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
5 \\
-3 \\
1
\end{array}\right]=\left[\begin{array}{c}
24 \\
3 \\
6
\end{array}\right] \text {, so } \\
& x=\left[\begin{array}{c}
24 / 18 \\
3 / 9 \\
6 / 18
\end{array}\right]=\left[\begin{array}{l}
4 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right] .
\end{aligned}
$$

2. Let $u^{1}=\left[\begin{array}{c}-2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right], u^{2}=\left[\begin{array}{c}1 / 3 \\ 2 / 3 \\ 0\end{array}\right]$
a. Form the matrix $U=\left[\begin{array}{ll}u^{1} & u^{2}\end{array}\right]$ and confirm that the columns of U are orthogonal by computing $U^{T} U$.

$$
U=\left[\begin{array}{cc}
-2 / 3 & 1 / 3 \\
1 / 3 & 2 / 3 \\
2 / 3 & 0
\end{array}\right], U^{T} U=\left[\begin{array}{ccc}
-2 / 3 & 1 / 3 & 2 / 3 \\
1 / 3 & 2 / 3 & 0
\end{array}\right]\left[\begin{array}{cc}
-2 / 3 & 1 / 3 \\
1 / 3 & 2 / 3 \\
2 / 3 & 0
\end{array}\right]=\left[\begin{array}{cc}
10 / 9 & 0 \\
0 & 5 / 9
\end{array}\right] \text { which is }
$$

diagonal so the columns of U are orthogonal.
b. Normalize the columns and confirm that $U^{T} U=I$.

After normalization,

$$
U=\left[\begin{array}{cc}
-2 / \sqrt{10} & 1 / \sqrt{5} \\
1 / \sqrt{10} & 2 / \sqrt{5} \\
2 / \sqrt{10} & 0
\end{array}\right], U T U=\left[\begin{array}{ccc}
-2 / \sqrt{10} & 1 / \sqrt{10} & 2 / \sqrt{10} \\
1 / \sqrt{5} & 2 / \sqrt{5} & 0
\end{array}\right]\left[\begin{array}{cc}
-2 / \sqrt{10} & 1 / \sqrt{5} \\
1 / \sqrt{10} & 2 / \sqrt{5} \\
2 / \sqrt{10} & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

3. Answer true or false to the following. If false offer a counterexample.
a. Every orthogonal set in \mathbb{R}^{n} is linearly independent.

False. The set consisting of a zero vector alone is orthogonal but not linearly independent.
b. If a set $S=\left\{u^{1}, u^{2}, \ldots, u^{k}\right\}$ has the property that $u^{i} \cdot u^{j}=0$ whenever $i \neq j$, then S is an orthonormal set.

False. The set consisting of a zero vector alone has the property that $u^{i} \cdot u^{j}=0$ whenever $i \neq j$, but S is not an orthonormal set.
4. Show that if U is a square orthogonal matrix then $U^{T}=U^{-1}$.

We have $U^{T} U=I$, so $U^{T}=U^{-1}$.
5. Show that if U is an $m \times n$ orthogonal matrix then for all $x \in \mathbb{R}^{n},\|U x\|=\|x\|$. (This can be stated as "An orthogonal transformation preserves length.".)

For all $x \in \mathbb{R}^{n},\|U x\|^{2}=(U x)^{T}(U x)=x^{T} U^{T} U x=x^{T} x=\|x\|^{2}$.
6. Show that if P is a projection then so is $I-P$. (Remember the definition of a projection.)

Since P is a projection, $P^{2}=P$, but then
$(I-P)^{2}=(I-P)(I-P)=I-P-P+P^{2}=I-P-P+P=I-P$, so $I-P$ is also a projection.
7. Consider this mathematical (and not necessarily computer) procedure:

$$
\left[\alpha, v^{\prime}\right]=\text { project }[u, v]
$$

Inputs vectors u and v, computes and Returns $\alpha=u \cdot v / u \cdot u$ and $v^{\prime}=v-\alpha u$.
Now, let $u^{1}=\left[\begin{array}{c}3 \\ -3 \\ 0\end{array}\right], u^{2}=\left[\begin{array}{c}-1 \\ 5 \\ -1\end{array}\right], u^{3}=\left[\begin{array}{c}9 \\ -3 \\ 3\end{array}\right]$.
a. $\left[r_{1,2}, u_{2}{ }^{\prime}\right]=$ project $\left[u_{1}, u_{2}\right]$.(That is, subtract the projection of u_{2} onto the subspace spanned by u_{1}.)

$$
\text { project }\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
5 \\
-1
\end{array}\right] \text {] yields } r_{1,2}=-18 / 18=-1 \text {, and } u_{2}{ }^{\prime}=\left[\begin{array}{c}
-1 \\
5 \\
-1
\end{array}\right]-(-1)\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right] \text {. }
$$

b. $\left[r_{1,3}, u_{3}^{\prime}\right]=$ project $\left[u_{1}, u_{3}\right]$. (That is, subtract the projection of u_{3} onto the subspace spanned by u_{1}.)

$$
\text { project }\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right],\left[\begin{array}{c}
9 \\
-3 \\
3
\end{array}\right] \text {] yields } r_{1,3}=36 / 18=2 \text {, and } u_{3}{ }^{\prime}=\left[\begin{array}{c}
9 \\
-3 \\
3
\end{array}\right]-2\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right] \text {. }
$$

c. $\left[r_{2,3}, u_{3}{ }^{\prime \prime}\right]=$ project $\left[u_{2}{ }^{\prime}, u_{3}{ }^{\prime}\right]$. (That is, subtract the projection of $u_{3}{ }^{\prime}$ onto the subspace spanned by $u_{2}{ }^{\prime}$.)

$$
\text { project }\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right] \text {] yields } r_{2,3}=9 / 9=1 \text {, and } u_{3}^{\prime}=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]-1\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right] \text {. }
$$

d. Compute $A=\left[\begin{array}{lll}u_{1} & u_{2} \prime^{\prime} & u_{3}\end{array}\right]\left[\begin{array}{ccc}1 & r_{1,2} & r_{1,3} \\ 0 & 1 & r_{2,3} \\ 0 & 0 & 1\end{array}\right]$. (Compare A to $\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$ and compare $\left[\begin{array}{lll}u_{1} & u_{2}{ }^{\prime} & u_{3}{ }^{\prime \prime}\end{array}\right]$ to U in Problem 1. You have just used the Gram-Schmidt Algorithm to orthogonalize vectors.)

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-3 & 2 & 1 \\
0 & -1 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
3 & -1 & 9 \\
-3 & 5 & -3 \\
0 & -1 & 3
\end{array}\right]=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right] \text { and } \\
& {\left[\begin{array}{lll}
u_{1} & u_{2}^{\prime} & u_{3}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-3 & 2 & 1 \\
0 & -1 & 4
\end{array}\right]=U \text { in Problem } 1 .}
\end{aligned}
$$

