Name _____

Row 1 2 3 4 5

Homework 14B CS 313H

The important issue is the logic you used to arrive at your answer.

1. Let *A* be any set and *R* a symmetric relation on *A*. Prove that for $n \ge 1$, R^n (the n^{th} order composition of *R* with itself) is symmetric. (Recall $R^1 = R$ and for $n \ge 1, R^{n+1} = R^n \circ R$.)

2. Let *A* be any set and *R* a relation on *A*. Prove that the reflexive closure of *R* is $R \cup I$. (Remember you must show that $R \cup I$ is reflexive and that, if $R \subseteq \overline{R} \subseteq R \cup I$ and \overline{R} is reflexive, then $\overline{R} = R \cup I$.)

3. Let *A* be any set and *R* a relation on *A*. Prove that the symmetric closure of *R* is $R \cup R^{-1}$. (Remember you must show that $R \cup R^{-1}$ is symmetric and that, if $R \subseteq \overline{R} \subseteq R \cup R^{-1}$ and \overline{R} is symmetric, then $\overline{R} = R \cup R^{-1}$.)

4. Specify the transitive closure of the following relations:

a. Let $A = \{$ living people $\}$ and $R = \{(x, y) \in A \times A : x \text{ is a child of } y\}$

b. Let $B = \{x : x \in \mathbb{N} \land x \le 100\}$ and $S = \{(x, y) \in B \times B : y = x+1\}$

c. Let $C = \{1, 2, 3, 4, 5\}$ and $T = \{(1, 2), (1, 4), (2, 5), (5, 3)\}$