Name \qquad
Homework 14B
CS 313H
The important issue is the logic you used to arrive at your answer.

1. Let A be any set and R a symmetric relation on A. Prove that for $n \geq 1, R^{n}$ (the $n^{\text {th }}$ order composition of R with itself) is symmetric. (Recall $R^{1}=R$ and for $\left.n \geq 1, R^{n+1}=R^{n} \circ R.\right)$
2. Let A be any set and R a relation on A. Prove that the reflexive closure of R is $R \cup I$. (Remember you must show that $R \cup I$ is reflexive and that, if $R \subseteq \bar{R} \subseteq R \cup I$ and \bar{R} is reflexive, then $\bar{R}=R \cup I$.
3. Let A be any set and R a relation on A. Prove that the symmetric closure of R is $R \cup R^{-1}$. (Remember you must show that $R \cup R^{-1}$ is symmetric and that, if $R \subseteq \bar{R} \subseteq R \cup R^{-1}$ and \bar{R} is symmetric, then $\bar{R}=R \cup R^{-1}$.)
4. Specify the transitive closure of the following relations:
a. Let $\mathrm{A}=\{$ living people $\}$ and $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) \in \mathrm{A} \times \mathrm{A}: \mathrm{x}$ isachildof y$\}$
b. Let $B=\{x: x \in \mathbb{N} \wedge x \leq 100\}$ and $S=\{(x, y) \in B \times B: y=x+1\}$
c. Let $C=\{1,2,3,4,5\}$ and $T=\{(1,2),(1,4),(2,5),(5,3)\}$
