Name \qquad

Homework 18

CS 313H
The important issue is the logic you used to amive at your answer.
$1.0 n$ the set \mathbb{Z}^{+}of positive integers, consider the division relation $D=\{(x, y): x$ evenlydivides $y\}$. Prove that D is a partial order on \mathbb{Z}^{+}.
2. Prove or disprove (with a simple counterexample): the division relation on \mathbb{Z}^{+}is a total order.
3. Given a non-empty set A, on its power set $P(A)$ consider the subset relation $S=\{(x, y): x \subseteq y\}$. Prove that S is a partial order on $P(A)$.
4. Prove or disprove (with a simple counterexample): For all non-empty sets A , the subset relation on $\mathrm{P}(\mathrm{A})$ is a total order.
5. On the set $\mathbb{Z} \times \mathbb{Z}$ of ordered pairs of integers, consider the lexicographical (or "dictionary") ordering relation
$L E=\{((x, y),(w, z)):(x \leq w) \wedge((x=w) \Rightarrow(y \leq z))\}$. Prove that LE is a partial order on $\mathbb{Z} \times \mathbb{Z}$. (Note: Be very careful here. Since $\mathbb{Z} \times \mathbb{Z}$ has ordered pairs as elements, LE has pairs of pairs as elements.)
6. Prove or disprove (with a simple counterexample): the lexicographical ordering relation on $\mathbb{Z} \times \mathbb{Z}$ is a total order.

