Homework 18 CS 313H

The important issue is the logic you used to arrive at your answer.

1. On the set \mathbb{Z}^+ of positive integers, consider the division relation $D = \{(x, y) : x \text{ evenly divides } y\}$. Prove that D is a partial order on \mathbb{Z}^+ .

2. Prove or disprove (with a simple counterexample): the division relation on \mathbb{Z}^+ is a total order.

3. Given a non-empty set *A*, on its power set P(A) consider the subset relation $S = \{(x, y) : x \subseteq y\}$. Prove that *S* is a partial order on P(A).

4. Prove or disprove (with a simple counterexample): For all non-empty sets A, the subset relation on P(A) is a total order.

5. On the set $\mathbb{Z} \times \mathbb{Z}$ of ordered pairs of integers, consider the lexicographical (or "dictionary") ordering relation $LE = \{((x, y), (w, z)): (x \le w) \land ((x = w) \Rightarrow (y \le z))\}$. Prove that *LE* is a partial order on $\mathbb{Z} \times \mathbb{Z}$. (**Note:** Be very careful here. Since $\mathbb{Z} \times \mathbb{Z}$ has ordered pairs as elements, *LE* has pairs of pairs as elements.)

6. Prove or disprove (with a simple counterexample): the lexicographical ordering relation on $\mathbb{Z} \times \mathbb{Z}$ is a total order.