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The important issue is the logic you used to arrive at your answer.

1. On the set Z" of positive integers, consider the division relation
D ={(x, y):x evenlydivides y} . Prove that D is a partial order on Z*.

2. Prove or disprove (with a simple counterexample): the division relation on Z* is
a total order.

3. Given a non-empty set A, on its power set P(A) consider the subset relation
S={(x,y):x 1 y}.Provethat S isa partial order on P(A).



4. Prove or disprove (with a simple counterexample): For all non-empty sets A,
the subset relation on P(A) is a total order.

5.0ntheset Z~ Z of ordered pairs of integers, consider the lexicographical (or
“dictionary”) ordering relation

LE :{((x, Y),(w,z)):(x Ew)U((x =w) P (y £z))} . Prove that LE is a partial
orderon Z~ 7. (Note: Be very careful here. Since Z~ 7Z has ordered pairs as
elements, LE has pairs of pairs as elements.)

6. Prove or disprove (with a simple counterexample): the lexicographical ordering
relation on Z~ Z is a total order.



