Examination 1 Solutions

CS 313H

1. [10] Use a truth table to determine for which truth values of p,q, and $r (\sim (p \land (q \lor r))) \Leftrightarrow ((\sim p \lor \sim q) \land (\sim p \lor \sim r))$ is true.

Let E =
$$((\sim (p \land (q \lor r))) \Leftrightarrow ((\sim p \lor \sim q) \land (\sim p \lor \sim r)))$$

p	q	r	$q \vee r$	$p \land (q \lor r)$	$\sim (p \land (q \lor r))$	~ #	$\sim q$	~ r	$\sim p \lor \sim q$	$\sim p \lor \sim r$	$(\sim p \lor \sim q) \land (\sim p \lor \sim r)$	Е
Τ	Т	Т	Т	Т	F	F	F	F	F	F	F	Т
Τ	Т	F	Т	Τ	F	F	F	Т	F	Τ	F	Т
Τ	F	Т	Т	Τ	F	F	Т	F	Т	F	F	Τ
Τ	F	F	F	F	Τ	F	Т	Τ	Т	Τ	T	Т
F	Т	Т	Т	F	Т	Т	F	F	Т	Т	Т	Т
F	Т	F	Т	F	Т	Т	F	Т	Т	Т	Т	Т
F	F	Т	Т	F	Т	Т	Т	F	Т	Т	Т	Т
F	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т

So the expression is true for all truth values of p, q, and r.

2. [20] Using sentential calculus (with a four column format), prove that the conclusion $(\sim p \land (\sim q \Rightarrow p)) \Rightarrow q$ is tautologically true (i.e., follows from no premises).

$$\{Pr_1\} \qquad (1.) \sim p \land (\sim q \Rightarrow p) \qquad \text{P (for C)}$$

$$\{Pr_1\} \qquad (2.) \sim p \qquad \text{Simp (1)}$$

$$\{Pr_1\} \qquad (3.) \sim q \Rightarrow p \qquad \text{Simp (1)}$$

$$\{Pr_1\} \qquad (4.) \sim q \qquad \text{MT (2), (3)}$$

$$\{Pr_1\} \qquad (5.) q \qquad \text{DN (4)}$$

$$\{\} \qquad (6.) (\sim p \land (\sim q \Rightarrow p)) \Rightarrow q \qquad \text{C (1), (5)}$$

3. [20] Prove that the conclusion $(p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$ follows from the premise $p \Rightarrow q$. First convert the premises and the negation of the conclusion into Conjunctive Normal Form, and then employ a resolution proof to get a contradiction.

$$p \Rightarrow q$$

$$\sim p \lor q$$

$$\sim (p \Rightarrow (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$$

$$\sim (\sim (p \Rightarrow (q \Rightarrow r)) \lor (p \Rightarrow r))$$

$$\sim (p \Rightarrow (q \Rightarrow r)) \land \sim (p \Rightarrow r)$$

$$(\sim p \lor (\sim q \lor r)) \land \sim (\sim p \lor r)$$

$$(\sim p \lor (\sim q \lor r)) \land (\sim p \land \sim r)$$

$$(\sim p \lor \sim q \lor r) \land p \land \sim r)$$
1. $\sim p \lor q$
P

2.
$$\sim p \lor \sim q \lor r$$
 P
3. p P
4. $\sim r$ P
5. q Res (2), (3)
6. $\sim q \lor r$ Res (1), (2)
7. r Res (5), (6)
8. false Conj. (6), (7)

4. [10] a. Using the predicates defined on the set of things:

Px x is a person,

Tt t is time,

Rrt r is telling the truth at t,

Lrt r is lying at t,

express in the syntax of Predicate Calculus (you may use integers as constants):

The universe of discourse is things – which includes, among other things, people and time. Do not define any other sets or predicates.

$$(\exists x)(\exists t)(Px \land Tt \land Rxt) \land (\exists y)(Py \land (\forall t)(Tt \Longrightarrow \sim Lyt))$$

b. [10] Using the predicates defined on the set of real numbers:

Ix x is an integer, Mxyz $x \cdot y = z$, Lxy x < y,

express in the syntax of Predicate Calculus (you may use integers as constants):

The universe of discourse is real numbers. Do not define any other sets or predicates. Recall that a prefect square has a square root that is an integer.

$$(\exists x)(L100x \land Lx200 \land (\exists z)(Iz \land Mzzx))$$

5. [20] Prove that $(\forall x)Px \land (\exists y)Qy$ follows from $(\forall x)(Px \land Qx)$.

2)
2)
<u>(</u>
1

[&]quot;Some people tell the truth some of the time and some people never lie."

[&]quot;There is a perfect square strictly between 100 and 200."