1	10	
2	20	
3	15	
4	15	
5	20	
Total	80	

\qquad

Examination 1

CS 313H

1. The important issue is the logic you used to arrive at your answer.
2. Use extra paper to determine your solutions then neatly transcribe them onto these sheets.
3. Do not submit the scratch sheets. However, all of the logic necessary to obtain the solution should be on these sheets.
4. Comment on all logical flaws and omissions and enclose the comments in boxes
5. [10] Using a truth table prove that $(p \vee \sim(q \wedge r)) \Rightarrow(q \Rightarrow(r \Rightarrow p))$ is a tautology.
6. [20] Using the predicates defined on the set of real numbers:

LTxy x is less than y,
EQxy x is equal to y,
SRxy x is a square root of y,
Express in the syntax of Predicate Calculus:
a. "All real numbers x, y, and z satisfy if x is less than y and y is less than z then x is less than z."
b. "For ezrery pair of numbers x and y so that $x<y$, there is a strictly betzeen x and y."
c. "For ezrery pair of numbers x and y so that $x<y$, there is more than one number strictly between x and y."
d. "A ny positizx number has at most one positize square root."
3. [15] Using sentential calculus (with a four column format), prove $s \Rightarrow r$ follows from the premises $p \Rightarrow(q \Rightarrow r), p \vee \sim s$, and q.
4. [15] Prove $(p \vee \sim q) \Rightarrow(p \vee q)$ follows from the premise $\sim q \Rightarrow p$ using resolution.
5. [20] Prove that $((\exists x)((\forall y) R x y) \Rightarrow((\forall u)((\exists v) R v u)$ holds without premises.

