Examination 2 Solutions

CS 313H

1. [10] Using induction, prove that for $n \ge 0$, $\sum_{k=0}^{n} 2^{k} = 2^{n+1} - 1$

For n = 1, we have $\sum_{k=0}^{0} 2^k = 2^0 = 1 = 2^{0+1} - 1$. Now assume the result is true for $n \ge 0$. We then have $\sum_{k=0}^{n+1} 2^k = \sum_{k=0}^{n} 2^k + 2^{n+1} = (2^{n+1} - 1) + 2^{n+1} = 2 \cdot 2^{n+1} - 1 = 2^{(n+1)+1} - 1$. The result then holds for all $n \ge 0$.

2.a [5] Prove for any set A, that $A = A \cap A$.

We have

$$x \in A$$

 $\Leftrightarrow x \in A \land x \in A$
 $\Leftrightarrow x \in A \land x \in A$
Thus, $A = A \cap A$

b [5] Prove for any set A, that $A = A \cup A$.

We have

$$x \in A$$

 $\Leftrightarrow x \in A \lor x \in A$
 $\Leftrightarrow x \in A \cup A.$
Thus, $A = A \cup A$

b [10] Using parts a. and b. to prove that $A \cup B = A \cap B$ if and only if A = B.

Suppose A = B. Then $A \cup B = A \cup A = A = A \cap A = A \cap B$. Alternatively, assume $A \cup B = A \cap B$. Then $A \subseteq A \cup B = A \cap B \subseteq B$ and $B \subseteq A \cup B = A \cap B \subseteq A$, so A = B.

3. [15]. Given sets *A*, *B*, and *C* and relations *R*, between *A* and *B*, and *S*, between *B* and *C*, prove that $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

We have

$$(x, y) \in (S \circ R)^{-1}$$

$$\Leftrightarrow (y, x) \in S \circ R$$

$$\Leftrightarrow \exists z \in B \ni (y, z) \in R \land (z, x) \in S$$

$$\Leftrightarrow \exists z \in B \ni (x, z) \in S^{-1} \land (z, y) \in R^{-1}$$

$$\Leftrightarrow (y, x) \in R^{-1} \circ S^{-1}.$$
Thus, $(S \circ R)^{-1} = R^{-1} \circ S^{-1}.$

4. [20]. Prove that if R is a partial order on a set A, then R^{-1} is also a partial order on A.

We need to show that R^{-1} is reflexive, antisymmetric, and transitive. Since R is a partial order, thus R is reflexive, antisymmetric, and transitive, we have first that for all $x \in A$, $(x,x) \in R$, so $(x,x) \in R^{-1}$, and R^{-1} is reflexive. Now take $x, y \in A$ so that $(x, y) \in R^{-1}$ and $(y, x) \in R^{-1}$. We then have $(y, x) \in R$ and $(x, y) \in R$ so by the antisymmetry of R, $x \neq y$. Thus, R^{-1} is antisymmetric. Finally, take $x, y, z \in A$ so that $(x, y) \in R^{-1}$ and $(y, z) \in R^{-1}$. We then have $(y, x) \in R$ and $(z, y) \in R$ so by the transitivity of R, $(z, x) \in R$ and hence $(x, z) \in R^{-1}$. Thus, R^{-1} is transitive and a partial order.

5. Consider relations R and S on a set A. Prove or disprove with a simple counter example each of the following:

.a [10] If R and S are symmetric, then $R \sim S$ is symmetric.

If $(x, y) \in \mathbb{R} \sim S$, then $(x, y) \in \mathbb{R}$ and by the symmetry of \mathbb{R} , $(y, x) \in \mathbb{R}$. Also, if $(x, y) \in \mathbb{R} \sim S$ then $(x, y) \notin S$ and by the symmetry of \mathbb{R} , $(y, x) \notin S$. We conclude that $(y, x) \in \mathbb{R} \sim S$ so $\mathbb{R} \sim S$ is symmetric.

b [10] If R and S are antisymmetric, then $R \sim S$ is antisymmetric.

If $(x, y) \in R \sim S$ and $(y, x) \in R \sim S$, then $(x, y) \in R$ and $(y, x) \in R$ so by the antisymmetry of R, $x \neq y$. We conclude that $R \sim S$ is antisymmetric.

b [10] If R and S are transitive, then $R \sim S$ is transitive.

 $R \sim S$ may not be transitive. Let $A = \{1,2\}, R = \{(1,1), (1,2), (2,1), (2,2)\}$, and $S = \{(1,1), (2,2)\}$. Then $R \sim S = \{(1,2), (2,1)\}$ and $(1,2) \in R \sim S$ and $(1,2) \in R \sim S$, yet $(1,1) \notin R \sim S$ so $R \sim S$ is not transitive.