Examination 2 Solutions

CS 313H

1. [10] Using induction, prove that for $n \geq 0, \sum_{k=0}^{n} 2^{k}=2^{n+1}-1$

For $n=1$, we have $\sum_{k=0}^{0} 2^{k}=2^{0}=1=2^{0+1}-1$. Now assume the result is true for $n \geq 0$. We then have $\sum_{k=0}^{n+1} 2^{k}=\sum_{k=0}^{n} 2^{k}+2^{n+1}=\left(2^{n+1}-1\right)+2^{n+1}=2 \cdot 2^{n+1}-1=2^{(n+1)+1}-1$. The result then holds for all $n \geq 0$.
2.a [5] Prove for any set A, that $A=A \cap A$.

We have

$$
\begin{aligned}
& x \in A \\
& \Leftrightarrow x \in A \wedge x \in A \\
& \Leftrightarrow x \in A \cap A .
\end{aligned}
$$

Thus, $A=A \cap A$
b [5] Prove for any set A, that $A=A \cup A$.
We have

$$
\begin{aligned}
& x \in A \\
& \Leftrightarrow x \in A \vee x \in A \\
& \Leftrightarrow x \in A \cup A .
\end{aligned}
$$

Thus, $A=A \cup A$
\mathbf{b} [10] Using parts a. and \mathbf{b}. to prove that $A \cup B=A \cap B$ if and only if $A=B$.
Suppose $A=B$. Then $A \cup B=A \cup A=A=A \cap A=A \cap B$. Alternatively, assume $A \cup B=A \cap B$. Then $A \subseteq A \cup B=A \cap B \subseteq B$ and $B \subseteq A \cup B=A \cap B \subseteq A$, so $A=B$.
3. [15]. Given sets A, B, and C and relations R, between A and B, and S, between B and C, prove that $(S \circ R)^{-1}=R^{-1} \circ S^{-1}$.

We have

$$
\begin{aligned}
& (x, y) \in(S \circ R)^{-1} \\
& \Leftrightarrow(y, x) \in S \circ R \\
& \Leftrightarrow \exists z \in B \ni(y, z) \in R \wedge(z, x) \in S \\
& \Leftrightarrow \exists z \in B \ni(x, z) \in S^{-1} \wedge(z, y) \in R^{-1} \\
& \Leftrightarrow(y, x) \in R^{-1} \circ S^{-1} .
\end{aligned}
$$

Thus, $(S \circ R)^{-1}=R^{-1} \circ S^{-1}$.
4. [20]. Prove that if R is a partial order on a set A, then R^{-1} is also a partial order on A.

We need to show that R^{-1} is reflexive, antisymmetric, and transitive. Since R is a partial order, thus R is reflexive, antisymmetric, and transitive, we have first that for all $x \in A,(x, x) \in R$, so $(x, x) \in \mathrm{R}^{-1}$, and R^{-1} is reflexive. Now take $x, y \in A$ so that $(x, y) \in \mathrm{R}^{-1}$ and $(y, x) \in \mathrm{R}^{-1}$. We then have $(y, x) \in \mathrm{R}$ and $(x, y) \in \mathrm{R}$ so by the antisymmetry of $\mathrm{R}, x \neq y$. Thus, R^{-1} is antisymmetric. Finally, take $x, y, z \in A$ so that $(x, y) \in \mathrm{R}^{-1}$ and $(y, z) \in \mathrm{R}^{-1}$. We then have $(y, x) \in \mathrm{R}$ and $(z, y) \in \mathrm{R}$ so by the transitivity of $R,(z, x) \in R$ and hence $(x, z) \in R^{-1}$. Thus, R^{-1} is transitive and a partial order.
5.. Consider relations R and S on a set A. Prove or disprove with a simple counter example each of the following:
.a [10] If R and S are symmetric, then $R \sim S$ is symmetric.
If $(x, y) \in \mathrm{R} \sim S$, then $(x, y) \in \mathrm{R}$ and by the symmetry of $\mathrm{R},(y, x) \in \mathrm{R}$. Also, if $(x, y) \in \mathrm{R} \sim S$ then $(x, y) \notin S$ and by the symmetry of $\mathrm{R},(y, x) \notin S$. We conclude that $(y, x) \in \mathrm{R} \sim S$ so $\mathrm{R} \sim S$ is symmetric.
b [10] If R and S are antisymmetric, then $R \sim S$ is antisymmetric.
If $(x, y) \in \mathrm{R} \sim S$ and $(y, x) \in \mathrm{R} \sim S$, then $(x, y) \in \mathrm{R}$ and $(y, x) \in \mathrm{R}$ so by the antisymmetry of $R, x \neq y$. We conclude that $R \sim S$ is antisymmetric.
b [10] If R and S are transitive, then $R \sim S$ is transitive.
$\mathrm{R} \sim S$ may not be transitive. Let $A=\{1,2\}, \mathrm{R}=\{(1,1),(1,2),(2,1),(2,2)\}$, and $S=\{(1,1),(2,2)\}$. Then $R \sim S=\{(1,2),(2,1)\}$ and $(1,2) \in R \sim S$ and $(1,2) \in R \sim S$, yet $(1,1) \notin R \sim S$ so $R \sim S$ is not transitive.

