Practice Examination 2 Solutions
CS 313H

1. [15] Prove that (($x)PxU A) follows from ($x)(Px UA)
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2. [10] For any sets A and B, prove that A~(A~B)=AC B.
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3. [20] Using induction prove for n3 2, that O (1- k—lz) =
k=2

For n=2, we have
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4.[10] For any sets A and B, prove that P(AC B) = P(A) C P(B).
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5. [10] Given aset A and two symmetric relations R and S on A, prove or disprove with a sim-
ple counter-example: RS is symmetric.

R oS need not be symmetric. Let A ={1,2,3}, S ={(1,2),(2,1)}, and R ={(2,3),(3,2)}.
Then RoS ={(1,3)}s0 (1,3)] RoS but (3,1)] RoS.

6. [20] Consider the relation R on Z , the set of integers: R ={(x, y):x + yiseven}. Prove that
R is an equivalence relation.

We seek to show R is reflexive, symmetric, and transitive. To that end, consider any

x| Z. Since x +x =2x iseven, (x,x)I R and R is reflexive. If (x, y)I R then x +y
is even, thus y+ X iseven, (y,x)I R,and R is symmetric. Lastly, suppose (x, y)I R
and (y,z)1 R thusboth x + y and y+z are even. The sum x +z +2y is even as well as
2y, so the difference x +z =(x +z +2y)- 2y isevenso (x,z)I R and R is transitive.
We conclude that R is an equivalence relation.



