Practice Examination 2 Solutions

CS 313H

1. [15] Prove that $((\exists x) P x \wedge A)$ follows from $(\exists x)(P x \wedge A)$
$\left\{P_{1}\right\}$
(1). $(\exists x)(P x \wedge A)$ P
$\left\{P_{1}\right\}$
(2). $P a \wedge A$
EI (1)
$\left\{P_{1}\right\}$
(3). $P a$
$\left\{P_{1}\right\}$
(4). $(\exists x) P x$
Simp (2)
EG (3)
$\left\{P_{1}\right\}$
(5). A
Simp (2)
$\left\{P_{1}\right\}$
(6). $((\exists x) P x \wedge A)$
Add (1), (5)
2. [10] For any sets A and B, prove that $A \sim(A \sim B)=A \cap B$.

$$
\begin{aligned}
& x \in A \sim(A \sim B) \\
& \Rightarrow x \in A \wedge \sim(x \in A \sim B) \\
& \Rightarrow x \in A \wedge \sim(x \in A \wedge x \notin B) \\
& \Rightarrow x \in A \wedge(x \notin A \vee x \in B) \\
& \Rightarrow(x \in A \wedge x \notin A) \vee(x \in A \wedge x \in B) \\
& \Rightarrow x \in A \wedge x \in B \\
& \Rightarrow x \in A \wedge B . \\
& x \in A \wedge B \\
& \Rightarrow x \in A \wedge x \in B \\
& \Rightarrow x \in A \wedge x \in B \\
& \Rightarrow x \in A \wedge(x \notin A \vee x \in B) \\
& \Rightarrow x \in A \wedge \sim(x \in A \wedge x \notin B) \\
& \Rightarrow x \in A \wedge \sim(x \in A \sim B) \\
& \Rightarrow x \in A \sim(A \sim B) .
\end{aligned}
$$

3. [20] Using induction prove for $\mathrm{n} \geq 2$, that $\prod_{\mathrm{k}=2}^{\mathrm{n}}\left(1-\frac{1}{\mathrm{k}^{2}}\right)=\frac{\mathrm{n}+1}{2 \mathrm{n}}$.

For $\mathrm{n}=2$, we have

$$
\begin{aligned}
\prod_{\mathrm{k}=2}^{\mathrm{n}}\left(1-\frac{1}{\mathrm{k}^{2}}\right) & =\prod_{\mathrm{k}=2}^{2}\left(1-\frac{1}{\mathrm{k}^{2}}\right) \\
& =1-\frac{1}{4} \\
& =\frac{3}{4} \\
& =\frac{2+1}{2 \cdot 2} \\
& =\frac{\mathrm{n}+1}{2 \mathrm{n}} .
\end{aligned}
$$

Now assume for some $\mathrm{n} \geq 2$, that $\prod_{\mathrm{k}=2}^{\mathrm{n}}\left(1-\frac{1}{\mathrm{k}^{2}}\right)=\frac{\mathrm{n}+1}{2 \mathrm{n}}$. We then have

$$
\begin{aligned}
\prod_{k=2}^{\mathrm{n}+1}\left(1-\frac{1}{\mathrm{k}^{2}}\right) & =\prod_{k=2}^{\mathrm{n}}\left(1-\frac{1}{\mathrm{k}^{2}}\right)\left(1-\frac{1}{(\mathrm{n}+1)^{2}}\right) \\
& =\frac{\mathrm{n}+1}{2 \mathrm{n}}\left(1-\frac{1}{(\mathrm{n}+1)^{2}}\right) \\
& =\frac{\mathrm{n}+1}{2 \mathrm{n}} \frac{(\mathrm{n}+1)^{2}-1}{(\mathrm{n}+1)^{2}} \\
& =\frac{\mathrm{n}+1}{2 \mathrm{n}} \frac{\mathrm{n}(\mathrm{n}+2)}{(\mathrm{n}+1)^{2}} \\
& =\frac{\mathrm{n}+2}{2(\mathrm{n}+1)} \\
& =\frac{(\mathrm{n}+1)+1}{2(\mathrm{n}+1)}
\end{aligned}
$$

4. [10] For any sets A and B, prove that $P(A \cap B)=P(A) \cap P(B)$.

$$
\begin{aligned}
& X \in P(A \cap B) \\
& \Leftrightarrow X \subseteq A \cap B \\
& \Leftrightarrow X \subseteq A \wedge X \subseteq B \\
& \Leftrightarrow X \in P(A) \wedge X \in P(B) \\
& \Leftrightarrow X \in P(A) \cap P(B) .
\end{aligned}
$$

5. [10] Given a set A and two symmetric relations R and S on A, prove or disprove with a simple counter-example: $R \circ S$ is symmetric.
$R \circ S$ need not be symmetric. Let $A=\{1,2,3\}, S=\{(1,2),(2,1)\}$, and $R=\{(2,3),(3,2)\}$. Then $R \circ S=\{(1,3)\}$ so $(1,3) \in R \circ S$ but $(3,1) \in R \circ S$.
6. [20] Consider the relation R on \mathbb{Z}, the set of integers: $R=\{(x, y): x+y$ iseven $\}$. Prove that R is an equivalence relation.

We seek to show R is reflexive, symmetric, and transitive. To that end, consider any $x \in \mathbb{Z}$. Since $x+x=2 x$ is even, $(x, x) \in R$ and R is reflexive. If $(x, y) \in R$ then $x+y$ is even, thus $y+x$ is even, $(y, x) \in R$, and R is symmetric. Lastly, suppose $(x, y) \in R$ and $(y, z) \in R$ thus both $x+y$ and $y+z$ are even. The sum $x+z+2 y$ is even as well as $2 y$, so the difference $x+z=(x+z+2 y)-2 y$ is even so $(x, z) \in R$ and R is transitive. We conclude that R is an equivalence relation.

