Practice Examination 2 Solutions

CS 313H

1. [15] Prove that $((\exists x)Px \land A)$ follows from $(\exists x)(Px \land A)$

$\{P_1\}$	(1). $(\exists x)(Px \land A)$	Р
$\{P_1\}$	(2). $Pa \wedge A$	EI (1)
$\{P_1\}$	(3). <i>Pa</i>	Simp (2)
$\{P_1\}$	(4). $(\exists x) P x$	EG (3)
$\{P_1\}$	(5). <i>A</i>	Simp (2)
$\{P_1\}$	(6). $((\exists x)Px \land A)$	Add (1), (5)

2. [10] For any sets A and B, prove that $A \sim (A \sim B) = A \cap B$.

$$x \in A \sim (A \sim B)$$

$$\Rightarrow x \in A \wedge \sim (x \in A \sim B)$$

$$\Rightarrow x \in A \wedge (x \notin A \wedge x \notin B)$$

$$\Rightarrow x \in A \wedge (x \notin A \vee x \in B)$$

$$\Rightarrow (x \in A \wedge x \notin A) \vee (x \in A \wedge x \in B)$$

$$\Rightarrow x \in A \wedge x \in B$$

$$\Rightarrow x \in A \wedge (x \notin A \vee x \in B)$$

$$\Rightarrow x \in A \wedge (x \notin A \vee x \notin B)$$

$$\Rightarrow x \in A \wedge (x \notin A \vee x \notin B)$$

$$\Rightarrow x \in A \wedge (x \in A \wedge x \notin B)$$

$$\Rightarrow x \in A \wedge (x \in A \wedge B)$$

$$\Rightarrow x \in A \wedge (A \sim B).$$

3. [20] Using induction prove for $n \ge 2$, that $\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = \frac{n+1}{2n}$.

For n = 2, we have

$$\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = \prod_{k=2}^{2} (1 - \frac{1}{k^2})$$
$$= 1 - \frac{1}{4}$$
$$= \frac{3}{4}$$
$$= \frac{2 + 1}{2 \cdot 2}$$
$$= \frac{n + 1}{2n}.$$

Now assume for some $n \ge 2$, that $\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = \frac{n+1}{2n}$. We then have $\prod_{k=2}^{n+1} (1 - \frac{1}{k^2}) = \prod_{k=2}^{n} (1 - \frac{1}{k^2})(1 - \frac{1}{(n+1)^2})$ $= \frac{n+1}{2n} (1 - \frac{1}{(n+1)^2})$ $= \frac{n+1}{2n} \frac{(n+1)^2 - 1}{(n+1)^2}$ $= \frac{n+1}{2n} \frac{n(n+2)}{(n+1)^2}$ $= \frac{n+2}{2(n+1)}$ $= \frac{(n+1)+1}{2(n+1)}.$

4. [10] For any sets A and B, prove that $P(A \cap B) = P(A) \cap P(B)$.

 $\begin{array}{l} X \in P(A \cap B) \\ \Leftrightarrow X \subseteq A \cap B \\ \Leftrightarrow X \subseteq A \wedge X \subseteq B \\ \Leftrightarrow X \in P(A) \wedge X \in P(B) \\ \Leftrightarrow X \in P(A) \cap P(B). \end{array}$

5. [10] Given a set A and two symmetric relations R and S on A, prove or disprove with a simple counter-example: $R \circ S$ is symmetric.

 $R \circ S$ need not be symmetric. Let $A = \{1,2,3\}, S = \{(1,2),(2,1)\}$, and $R = \{(2,3),(3,2)\}$. Then $R \circ S = \{(1,3)\}$ so $(1,3) \in R \circ S$ but $(3,1) \in R \circ S$.

6. [20] Consider the relation R on \mathbb{Z} , the set of integers: $R = \{(x, y) : x + y \text{ iseven}\}$. Prove that R is an equivalence relation.

We seek to show *R* is reflexive, symmetric, and transitive. To that end, consider any $x \in \mathbb{Z}$. Since x + x = 2x is even, $(x, x) \in R$ and *R* is reflexive. If $(x, y) \in R$ then x + y is even, thus y + x is even, $(y, x) \in R$, and *R* is symmetric. Lastly, suppose $(x, y) \in R$ and $(y, z) \in R$ thus both x + y and y + z are even. The sum x + z + 2y is even as well as 2 y, so the difference x + z = (x + z + 2y) - 2y is even so $(x, z) \in R$ and *R* is transitive. We conclude that *R* is an equivalence relation.