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1. [15] Prove that (( ) )∃ ∧x Px A  follows from ( )( )∃ ∧x Px A   
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1{ }P   (6). (( ) )∃ ∧x Px A    Add (1), (5) 
 
2. [10] For any sets A  and B , prove that ~ ( ~ ) .= ∩A A B A B  
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3. [20] Using induction prove for 2,n ≥  that 
2

2

1 1
(1 )

2

n

k

n
k n=

+
− =∏ . 
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Now assume for some 2,n ≥  that 
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4. [10] For any sets A  and B , prove that ( ) ( ) ( ).∩ = ∩P A B P A P B  
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5. [10] Given a set A  and two symmetric relations R  and S  on A , prove or disprove with a sim-
ple counter-example: R So  is symmetric. 
 

R So  need not be symmetric. Let {1,2,3},A = {(1,2),(2,1)}S = , and {(2,3),(3,2)}R = . 
Then {(1,3)}R S =o so (1,3) R S∈ o  but  (3,1) R S∈ o . 
 

6. [20] Consider the relation R  on ¢ , the set of integers: {( , ) : iseven}R x y x y= + . Prove that 
R  is an equivalence relation. 
 

We seek to show R  is reflexive, symmetric, and transitive. To that end, consider any 
.x ∈¢  Since 2x x x+ =  is even, ( , )x x R∈  and R  is reflexive. If ( , )x y R∈  then x y+  

is even, thus y x+  is even, ( , )y x R∈ , and R  is symmetric. Lastly, suppose ( , )x y R∈  
and ( , )y z R∈  thus both x y+  and y z+  are even. The sum 2x z y+ +  is even as well as 
2 ,y  so the difference ( 2 ) 2x z x z y y+ = + + −  is even so ( , )x z R∈  and R  is transitive. 
We conclude that R  is an equivalence relation. 
 


