Examination 2 Solutions

1. [15] Using induction, prove that for $n \geq 1, n^{3}+2 n$ is an integral multiple of 3
(i.e. $\forall n \in \mathbb{Z}\left((n \geq 1) \Rightarrow \exists k \in \mathbb{Z}\left(n^{3}+2 n=3 k\right)\right)$.

For $n=1$, we have $n^{3}+2 n=3=3 \cdot 1$. Now assume the result is true for $n \geq 1$. We then have some integer k so that have $n^{3}+2 n=3 k$. But then

$$
\begin{aligned}
(n+1)^{3}+2(n+1) & =n^{3}+3 n^{2}+3 n+1+2 n+2 \\
& =n^{3}+2 n+3\left(n^{2}+n+1\right) \\
& =3 k+3\left(n^{2}+n+1\right) \\
& =3 \cdot\left(k+n^{2}+n+1\right) .
\end{aligned}
$$

Since n is an integer, so is $k+n^{2}+n+1$ so $(n+1)^{3}+2(n+1)$ is an integral multiple of 3 . The result then holds for all $n \geq 1$.
2. [10] Using induction, prove that for $n \geq 1, \sum_{k=1}^{n}(4 k-3)=n(2 n-1)$.

For $n=1$, we have $\sum_{k=1}^{n}(4 k-3)=4-3=1=1(2 \cdot 1-1)=n(2 n-1)$. Now assume the result is true for $n \geq 1$. We then have

$$
\begin{aligned}
\sum_{k=1}^{n+1}(4 k-3) & =\sum_{k=1}^{n}(4 k-3)+(4(n+1)-3) \\
& =n(2 n-1)+4 n+4-3 \\
& =2 n^{2}-n+4 n+1 \\
& =2(n+1)^{2}-(n+1) \\
& =(n+1)(2(n+1)-1) .
\end{aligned}
$$

The result then holds for all $n \geq 1$.
3. a[5]Prove for any sets A, B, and C, that $(A \cup B) \sim C=(A \sim C) \cup(B \sim C)$.

$$
\begin{aligned}
& x \in(A \cup B) \sim C \\
& \Leftrightarrow(x \in A \vee x \in B) \wedge x \notin C \\
& \Leftrightarrow(x \in A \wedge x \notin C) \vee(x \in B \wedge x \notin C) \\
& \Leftrightarrow x \in A \sim C \vee x \in B \sim C \\
& \Leftrightarrow x \in(A \sim C) \cup(B \sim C)
\end{aligned}
$$

b.[10]Using induction and part a, prove for $n \geq 1$, all sets $A_{1}, A_{2}, \ldots, A_{n}$, and all C :

$$
\left(\bigcup_{i=1}^{n} A_{i}\right) \sim C=\bigcup_{i=1}^{n}\left(A_{i} \sim C\right)
$$

For $n=1$, we have $\left(\bigcup_{i=1}^{n} A_{i}\right) \sim C=A_{1} \sim C=\bigcup_{i=1}^{n}\left(A_{i} \sim C\right)$. Now assume the result is true for $n \geq 1$. We then have

$$
\begin{aligned}
\left(\bigcup_{i=1}^{n+1} A_{i}\right) & \sim C=\left(\bigcup_{i=1}^{n} A_{i} \cup A_{n+1}\right) \sim C \\
& =\left(\left(\bigcup_{i=1}^{n} A_{i}\right) \sim C\right) \cup\left(A_{n+1} \sim C\right) \\
& =\bigcup_{i=1}^{n}\left(A_{i} \sim C\right) \cup\left(A_{n+1} \sim C\right) \\
& =\bigcup_{i=1}^{n+1}\left(A_{i} \sim C\right) .
\end{aligned}
$$

The result then holds for all $n \geq 1$.
4. [15] Using induction, prove a generalized distributivity law for sets - that is, for $n \geq 1$ and all sets A and $B_{1}, B_{2}, \ldots, B_{n}$,

$$
A \cup \bigcap_{i=1}^{n} B_{i}=\bigcap_{i=1}^{n}\left(A \cup B_{i}\right) .
$$

(Recall that $\bigcap_{i=1}^{n+1} B_{i}=\left(\bigcap_{i=1}^{n} B_{i}\right) \cap B_{n+1}$.)
For $n=1$, we have $A \cup \bigcap_{i=1}^{1} B_{i}=A \cup B_{1}=\bigcap_{i=1}^{1}\left(A \cup B_{i}\right)$. Now assume the result is true for $n \geq 1$. We then have

$$
\begin{aligned}
A \cup \bigcap_{i=1}^{n+1} B_{i} & =A \cup\left(\bigcap_{i=1}^{n} B_{i} \cap B_{n+1}\right) \\
& =\left(A \cup \bigcap_{i=1}^{n} B_{i}\right) \cap\left(A \cup B_{n+1}\right) \\
& =\bigcap_{i=1}^{n}\left(A \cup B_{i}\right) \cap\left(A \cup B_{n+1}\right) \\
& =\bigcap_{i=1}^{n+1}\left(A \cup B_{i}\right)
\end{aligned}
$$

and the result then holds for all $n \geq 1$.
5. [10] For all sets A, B, C, and D, prove that $(A \cap B) \times(C \cap D) \subseteq(A \times C) \cap(B \times D)$.

We have

$$
\begin{aligned}
& (x, y) \in(A \cap B) \times(C \cap D) \\
& \Rightarrow x \in A \cap B \wedge y \in C \cap D \\
& \Rightarrow x \in A \wedge x \in B \wedge y \in C \wedge y \in D \\
& \Rightarrow x \in A \wedge y \in C \wedge x \in B \wedge y \in D \\
& \Rightarrow(x, y) \in A \times C \wedge(x, y) \in B \times D . \\
& \Rightarrow(x, y) \in(A \times C) \cap(B \times D)
\end{aligned}
$$

6. a [10]. Either prove or give a simple counterexample. Given symmetric relations R and S on a set A, the composition $S \circ \mathrm{R}$ is symmetric. (If you present a counterexample, present the relations as specific sets of ordered pairs rather using matrices or graphs.)

This is false. Let $A=\{0,1\}, R=\{(0,1),(1,0)\}$, and $S=\{(0,0)\}$. We have $S \circ R=\{(1,0)\}$. Since $(1,0) \in S \circ R$ but $(0,1) \notin S \circ R, S \circ R$ is not symmetric.
\mathbf{b} [10]. Either prove or give a simple counterexample. Given antisymmetric relations R and S on a set A, the difference $R \sim S$ is antisymmetric. (If you present a counterexample, present the relations as specific sets of ordered pairs rather using matrices or graphs.)

This is true. We have

$$
\begin{aligned}
& (x, y) \in \mathrm{R} \sim S \wedge x \neq y \\
& \Rightarrow(x, y) \in \mathrm{R} \wedge x \neq y \\
& \Rightarrow(y, x) \notin \mathrm{R} \\
& \Rightarrow(y, x) \notin \mathrm{R} \sim S .
\end{aligned}
$$

