Examination 2 Solutions

1. [15] Using induction, prove that for $n \ge 1$, $n^3 + 2n$ is an integral multiple of 3 (i.e. $\forall n \in \mathbb{Z} ((n \ge 1) \Longrightarrow \exists k \in \mathbb{Z} (n^3 + 2n = 3k))$.

For n = 1, we have $n^3 + 2n = 3 = 3 \cdot 1$. Now assume the result is true for $n \ge 1$. We then have some integer k so that have $n^3 + 2n = 3k$. But then $(n+1)^3 + 2(n+1) = n^3 + 3n^2 + 3n + 1 + 2n + 2$ $= n^3 + 2n + 3(n^2 + n + 1)$ $= 3k + 3(n^2 + n + 1)$ $= 3 \cdot (k + n^2 + n + 1).$

Since *n* is an integer, so is $k + n^2 + n + 1$ so $(n+1)^3 + 2(n+1)$ is an integral multiple of 3. The result then holds for all $n \ge 1$.

2. [10] Using induction, prove that for $n \ge 1$, $\sum_{k=1}^{n} (4k-3) = n(2n-1)$.

For n = 1, we have $\sum_{k=1}^{n} (4k-3) = 4-3 = 1 = 1(2 \cdot 1 - 1) = n(2n-1)$. Now assume the result is true for $n \ge 1$. We then have $\sum_{k=1}^{n+1} (4k-3) = \sum_{k=1}^{n} (4k-3) + (4(n+1)-3)$ = n(2n-1) + 4n + 4 - 3 $= 2n^2 - n + 4n + 1$ $= 2(n+1)^2 - (n+1)$ = (n+1)(2(n+1)-1).

The result then holds for all $n \ge 1$.

3. a[5]Prove for any sets A, B, and C, that $(A \cup B) \sim C = (A \sim C) \cup (B \sim C)$.

$$x \in (A \cup B) \sim C$$

$$\Leftrightarrow (x \in A \lor x \in B) \land x \notin C$$

$$\Leftrightarrow (x \in A \land x \notin C) \lor (x \in B \land x \notin C)$$

$$\Leftrightarrow x \in A \sim C \lor x \in B \sim C$$

$$\Leftrightarrow x \in (A \sim C) \cup (B \sim C)$$

b.[10] Using induction and part a, prove for $n \ge 1$, all sets $A_1, A_2, ..., A_n$, and all C:

$$\left(\bigcup_{i=1}^{n} A_{i}\right) \sim C = \bigcup_{i=1}^{n} (A_{i} \sim C).$$

For n = 1, we have $(\bigcup_{i=1}^{n} A_i) \sim C = A_1 \sim C = \bigcup_{i=1}^{n} (A_i \sim C)$. Now assume the result is true for $n \ge 1$. We then have $(\bigcup_{i=1}^{n+1} A_i) \sim C = (\bigcup_{i=1}^{n} A_i \cup A_{n+1}) \sim C$ $= ((\bigcup_{i=1}^{n} A_i) \sim C) \cup (A_{n+1} \sim C)$ $= \bigcup_{i=1}^{n} (A_i \sim C) \cup (A_{n+1} \sim C)$ $= \bigcup_{i=1}^{n+1} (A_i \sim C).$

The result then holds for all $n \ge 1$.

4. [15] Using induction, prove a generalized distributivity law for sets – that is, for $n \ge 1$ and all sets A and $B_1, B_2, ..., B_n$,

$$A \cup \bigcap_{i=1}^{n} B_i = \bigcap_{i=1}^{n} (A \cup B_i)$$

(Recall that $\bigcap_{i=1}^{n+1} B_i = (\bigcap_{i=1}^n B_i) \cap B_{n+1}$.) For n = 1, we have $A \cup \bigcap_{i=1}^1 B_i = A \cup B_1 = \bigcap_{i=1}^1 (A \cup B_i)$. Now assume the result is true for $n \ge 1$. We then have $A \cup \bigcap_{i=1}^{n+1} B_i = A \cup (\bigcap_{i=1}^n B_i \cap B_{n+1})$ $= (A \cup \bigcap_{i=1}^n B_i) \cap (A \cup B_{n+1})$ $= \bigcap_{i=1}^n (A \cup B_i) \cap (A \cup B_{n+1})$ $= \bigcap_{i=1}^{n+1} (A \cup B_i)$

and the result then holds for all $n \ge 1$.

5. [10] For all sets A, B, C, and D, prove that $(A \cap B) \times (C \cap D) \subseteq (A \times C) \cap (B \times D)$.

We have $(x, y) \in (A \cap B) \times (C \cap D)$ $\Rightarrow x \in A \cap B \land y \in C \cap D$ $\Rightarrow x \in A \land x \in B \land y \in C \land y \in D$ $\Rightarrow x \in A \land y \in C \land x \in B \land y \in D$ $\Rightarrow (x, y) \in A \times C \land (x, y) \in B \times D.$ $\Rightarrow (x, y) \in (A \times C) \cap (B \times D)$

6. a [10]. Either prove or give a simple counterexample. Given symmetric relations R and S on a set A, the composition $S \circ R$ is symmetric. (If you present a counterexample, present the relations as specific sets of ordered pairs rather using matrices or graphs.)

This is false. Let $A = \{0,1\}, R = \{(0,1), (1,0)\}$, and $S = \{(0,0)\}$. We have $S \circ R = \{(1,0)\}$. Since $(1,0) \in S \circ R$ but $(0,1) \notin S \circ R$, $S \circ R$ is not symmetric.

b [10]. Either prove or give a simple counterexample. Given antisymmetric relations R and S on a set A, the difference $R \sim S$ is antisymmetric. (If you present a counterexample, present the relations as specific sets of ordered pairs rather using matrices or graphs.)

This is true. We have $(x, y) \in \mathbb{R} \sim S \land x \neq y$ $\Rightarrow (x, y) \in \mathbb{R} \land x \neq y$ $\Rightarrow (y, x) \notin \mathbb{R}$ $\Rightarrow (y, x) \notin \mathbb{R} \sim S.$