
Examination 2 Solutions 
 
1. [15] Using induction, prove that for 1,n ≥ 3 2+n n  is an integral multiple of 3 
 (i.e. 3(( 1) ( 2 3 ))n n k n n k∀ ∈ ≥ ⇒ ∃ ∈ + =] ] . 
 

For 1,n =  we have 3 2 3 3 1+ = = ⋅n n .  Now assume the result is true for 1.n ≥  We then 
have some integer k  so that have 3 2 3+ =n n k . But then  
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Since n is an integer, so is 2 1+ + +k n n  so 3( 1) 2( 1)+ + +n n  is an integral multiple of 3. 
The result then holds for all 1.n ≥  

 

2. [10] Using induction, prove that for 1,n ≥
1
(4 3) (2 1).
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For 1,n =  we have 
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The result then holds for all 1.n ≥  
 
3. a[5]Prove for any sets , ,A B  and ,C  that ( ) ~ ( ~ ) ( ~ )A B C A C B C∪ = ∪ .  
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b.[10]Using induction and part a, prove for 1n ≥  , all sets 1 2, ,..., ,nA A A  and all C : 
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For 1,n =  we have 1
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The result then holds for all 1.n ≥  
  



4. [15] Using induction, prove a generalized distributivity law for sets – that is, for ≥ 1n  and all sets 
A  and 1 2, ,..., ,nB B B  

1 1

( ).
n n

i i
i i

A B A B
= =

∪ = ∪∩ ∩  

 

(Recall that 
1

1
1 1

( ) .
n n

i i n
i i

B B B
+

+
= =

= ∩∩ ∩ ) 

For 1,n =  we have 
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and the result then holds for all ≥ 1.n  
 
5. [10] For all sets , , ,A B C and D , prove that ( ) ( ) ( ) ( )A B C D A C B D∩ × ∩ ⊆ × ∩ × . 
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6. a [10]. Either prove or give a simple counterexample. Given symmetric relations R  and S  on a 
set A , the composition S RD  is symmetric. (If you present a counterexample, present the relations 
as specific sets of ordered pairs rather using matrices or graphs.) 
 

This is false. Let {0,1}, {(0,1),(1, 0)},A R= = and {(0, 0)}.S =  We have {(1,0)}=DS R . 
Since (1, 0) S R∈ D but (0,1) S R∉ D , S RD  is not symmetric. 

 
b [10]. Either prove or give a simple counterexample. Given antisymmetric relations R  and S  on a 
set A , the difference ~R S  is antisymmetric. (If you present a counterexample, present the relations 
as specific sets of ordered pairs rather using matrices or graphs.) 
 



This is true. We have 
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