Examination 2 Solutions

1. [10] For fixed real numbers *a* and *b*, consider the iteratively defined sequence:

$$s_0 = a$$

$$s_n = 2s_{n-1} + b, \text{ for } n \ge 1.$$

Using induction, prove that for $n \ge 0$, $s_n = 2^n a + (2^n - 1)b$.

For n = 0, we have $s_0 = a = 1 \cdot a + (1-1)b = 2^0 a + (2^0 - 1)b$. Now assume the result is true for some $n \ge 0$. We then have

$$s_{n+1} = 2s_n + b$$

= 2(2ⁿ a + (2ⁿ - 1)b) + b
= 2ⁿ⁺¹ a + (2ⁿ⁺¹ - 2 + 1)b
= 2ⁿ⁺¹ a + (2ⁿ⁺¹ - 1)b.

The result then holds for n+1 and by induction holds for all $n \ge 0$.

2. [10] Using induction, prove that for $n \ge 4$, $n! > 2^n$.

For n = 4, we have $n! = 4! = 24 > 16 = 2^4 = 2^n$. Now assume the result is true for some $n \ge 4$. We then have $n+1 \ge 5 > 2$ so $(n+1)! = (n+1) \cdot n! > (n+1) \cdot 2^n > 2 \cdot 2^n = 2^{n+1}$. The result then holds for n+1 and by induction holds for all $n \ge 4$.

3. [10] Prove for any sets *A*, *B*, and *C*, that if $A \subseteq C \cup B$ then $A \sim C \subseteq B$.

$$\begin{aligned} x \in A \sim C \\ \Rightarrow x \in A \land x \notin C \\ \Rightarrow x \in C \cup B \land x \notin C \\ \Rightarrow (x \in C \lor x \in B) \land x \notin C \\ \Rightarrow (x \in C \land x \notin C) \lor (x \in B \land x \notin C) \\ \Rightarrow x \in B \land x \notin C \\ \Rightarrow x \in B. \end{aligned}$$

4. [10]. Given sets *A*, *B*, and *C*, prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

 $(x, y) \in A \times (B \cup C)$ $\Leftrightarrow x \in A \land y \in B \cup C$ $\Leftrightarrow x \in A \land (y \in B \lor y \in C)$ $\Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$ $\Leftrightarrow (x, y) \in (A \times B) \lor (x, y) \in (A \times C)$ $\Leftrightarrow (x, y) \in (A \times B) \cup (A \times C).$

5. Show these two definitions of antisymmetry for a relation *R* on a set *A* are equivalent:

a.
$$\forall x, y \in A : ((x, y) \in R \land x \neq y) \Rightarrow (y, x) \notin R.$$

b. $\forall x, y \in A : ((x, y) \in R \land (y, x) \in R) \Rightarrow x = y.$

(Hint: Ignore the universal quantifier, let $P = "(x, y) \in R"$, $Q = "(y, x) \in R"$, and E = "x = y". Use simple logical identities to convert one to the other.)

Using the suggested notation, definition **a** is
$$(P \land \sim E) \Rightarrow \sim Q$$
 and definition **b** is
 $(P \land Q) \Rightarrow E$. We have:
 $(P \land \sim E) \Rightarrow \sim Q$
 $\Leftrightarrow \sim (P \land \sim E) \lor \sim Q$
 $\Leftrightarrow \sim (P \land \sim E) \lor \sim Q$
 $\Leftrightarrow \sim P \lor E \lor \sim Q$
 $\Leftrightarrow \sim P \lor E \lor \sim Q \lor E$.
 $\Leftrightarrow \sim (P \land Q) \lor E$
 $\Leftrightarrow (P \land Q) \Rightarrow E$

6. For these problems either prove the claim or give a simple counterexample. If you present a counterexample, present the relations as specific sets of ordered pairs rather than using matrices or graphs. For assume *R* and *S* are relations on a set *A* and $R \subseteq S$.

a [10]. If *R* is transitive then *S* is transitive.

This is false. Let $A = \{0,1\}, R = \emptyset$, and $S = \{(0,1), (1,0)\}$. *R* is transitive and $R \subseteq S$. Since $(0,1) \in S$ and $(1,0) \in S$ but $(0,0) \notin S$, *S* is not transitive. **b** [10]. If *S* is antisymmetric then *R* is antisymmetric. (Note the reversal of the order from part a.)

This is true. We have by the antisymmetry of *S*, $(x, y) \in R \land x \neq y$ $\Rightarrow (x, y) \in S \land x \neq y$ $\Rightarrow (y, x) \notin S$ $\Rightarrow (y, x) \notin R$. So *R* is also antisymmetric.

c [10]. If *R* is transitive then $R \circ R$ is transitive.

This is true. We have by the transitivity of R, $(x, y) \in R \circ R \land (y, z) \in R \circ R$ $\Rightarrow \exists u, v \in A \ni (x, u) \in R \land (u, y) \in R \land (y, v) \in R \land (v, z) \in R$ $\Rightarrow (x, y) \in R \land (y, z) \in R$ $\Rightarrow (x, z) \in R \circ R$. So $R \circ R$ is also transitive.

d [10]. If *R* is symmetric then $R \circ R$ is symmetric.

This is true. We have by the symmetry of R, $(x, y) \in R \circ R$ $\Rightarrow \exists z \in A \ni (x, z) \in R \land (z, y) \in R$ $\Rightarrow \exists z \in A \ni (z, x) \in R \land (y, z) \in R$ $\Rightarrow (y, x) \in R \circ R$. So $R \circ R$ is also symmetric.