
Examination 2 Solutions 
 
1. [10] For fixed real numbers a  and ,b consider the iteratively defined sequence: 
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Using induction, prove that for 0, 2 (2 1) .n n
nn s a b≥ = + −  

 
For 0,n =  we have 0 0
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The result then holds for 1n +  and by induction holds for all 0.n ≥  
 
2. [10] Using induction, prove that for 4,n ≥ ! 2 .> nn  
 

For 4 ,n =  we have 4! 4! 24 16 2 2 .= = > = = nn  Now assume the result is true for some 
4.n ≥  We then have 1 5 2n + ≥ > so 

1( 1)! ( 1) ! ( 1) 2 2 2 2 .++ = + ⋅ > + ⋅ > ⋅ =n n nn n n n   
The result then holds for 1n +  and by induction holds for all 4.n ≥  

 
3. [10]Prove for any sets , ,A B  and ,C  that if A C B⊆ ∪  then ~A C B⊆ .  
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4. [10]. Given sets , ,A B  and C , prove that × ∩ = × ∩ ×( ) ( ) ( )A B C A B A C .  
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5. Show these two definitions of antisymmetry for a relation R  on a set A  are equivalent: 
 

a. , : ( ( , ) ) ( , ) .x y A x y R x y y x R∀ ∈ ∈ ∧ ≠ ⇒ ∉  
 

b. , : ( ( , ) ( , ) ) .x y A x y R y x R x y∀ ∈ ∈ ∧ ∈ ⇒ =  
 
(Hint: Ignore the universal quantifier, let "( , ) ", "( , ) ",P x y R Q y x R= ∈ = ∈  and " ".E x y= =  
Use simple logical identities to convert one to the other.) 
 

Using the suggested notation, definition a is ( ~ ) ~P E Q∧ ⇒  and definition b is 
( ) .P Q E∧ ⇒ We have: 
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6. For these problems either prove the claim or give a simple counterexample. If you present a 
counterexample, present the relations as specific sets of ordered pairs rather than using matrices or 
graphs. For assume R  and S  are relations on a set A  and R S⊆ . 
 
a [10]. If R  is transitive then S  is transitive.  
 

This is false. Let {0,1}, ,A R= = ∅ and {(0,1),(1,0)}.S =  R is transitive and .R S⊆  
Since (0,1) S∈ and (1,0) S∈  but (0,0) S∉ , S  is not transitive. 

 



b [10]. If S  is antisymmetric then R  is antisymmetric. (Note the reversal of the order from part a.) 
 

This is true. We have by the antisymmetry of ,S  
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So R  is also antisymmetric. 
 

c [10]. If R  is transitive then R Ro  is transitive.  
 
This is true. We have by the transitivity of ,R  
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So R Ro  is also transitive. 
 
d [10]. If R  is symmetric then R Ro  is symmetric.  
 

This is true. We have by the symmetry of ,R  
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So R Ro  is also symmetric. 
 


