Examination 2 Solutions

1. [10] For fixed real numbers a and b, consider the iteratively defined sequence:

$$
\begin{aligned}
& s_{0}=a \\
& s_{n}=2 s_{n-1}+b, \text { for } n \geq 1
\end{aligned}
$$

Using induction, prove that for $n \geq 0, s_{n}=2^{n} a+\left(2^{n}-1\right) b$.

For $\mathrm{n}=0$, we have $s_{0}=a=1 \cdot a+(1-1) b=2^{0} a+\left(2^{0}-1\right) b$. Now assume the result is true for some $\mathrm{n} \geq 0$. We then have

$$
\begin{aligned}
s_{n+1} & =2 s_{n}+b \\
& =2\left(2^{n} a+\left(2^{n}-1\right) b\right)+b \\
& =2^{n+1} a+\left(2^{n+1}-2+1\right) b \\
& =2^{n+1} a+\left(2^{n+1}-1\right) b .
\end{aligned}
$$

The result then holds for $n+1$ and by induction holds for all $n \geq 0$.
2. [10] Using induction, prove that for $n \geq 4, n!>2^{n}$.

For $n=4$, we have $n!=4!=24>16=2^{4}=2^{n}$. Now assume the result is true for some $\mathrm{n} \geq 4$. We then have $\mathrm{n}+1 \geq 5>2$ so

$$
(n+1)!=(n+1) \cdot n!>(n+1) \cdot 2^{n}>2 \cdot 2^{n}=2^{n+1}
$$

The result then holds for $n+1$ and by induction holds for all $n \geq 4$.
3. [10]Prove for any sets A, B, and C, that if $\mathrm{A} \subseteq \mathrm{C} \cup \mathrm{B}$ then $\mathrm{A} \sim \mathrm{C} \subseteq \mathrm{B}$.

$$
\begin{aligned}
& x \in A \sim C \\
& \Rightarrow x \in A \wedge x \notin C \\
& \Rightarrow x \in C \cup B \wedge x \notin C \\
& \Rightarrow(x \in C \vee x \in B) \wedge x \notin C \\
& \Rightarrow(x \in C \wedge x \notin C) \vee(x \in B \wedge x \notin C) \\
& \Rightarrow x \in B \wedge x \notin C \\
& \Rightarrow x \in B
\end{aligned}
$$

4. [10]. Given sets A, B, and C, prove that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.

$$
\begin{aligned}
& (x, y) \in A \times(B \cup C) \\
& \Leftrightarrow x \in A \wedge y \in B \cup C \\
& \Leftrightarrow x \in A \wedge(y \in B \vee y \in C) \\
& \Leftrightarrow(x \in A \wedge y \in B) \vee(x \in A \wedge y \in C) \\
& \Leftrightarrow(x, y) \in(A \times B) \vee(x, y) \in(A \times C) \\
& \Leftrightarrow(x, y) \in(A \times B) \cup(A \times C) .
\end{aligned}
$$

5. Show these two definitions of antisymmetry for a relation R on a set A are equivalent:
a. $\forall x, y \in A:((x, y) \in R \wedge x \neq y) \Rightarrow(y, x) \notin R$.
b. $\forall x, y \in A:((x, y) \in R \wedge(y, x) \in R) \Rightarrow x=y$.
(Hint: Ignore the universal quantifier, let $P="(x, y) \in R ", Q="(y, x) \in R "$, and $E=" x=y "$. Use simple logical identities to convert one to the other.)

Using the suggested notation, definition \mathbf{a} is $(\mathrm{P} \wedge \sim \mathrm{E}) \Rightarrow \sim \mathrm{Q}$ and definition \mathbf{b} is $(\mathrm{P} \wedge \mathrm{Q}) \Rightarrow \mathrm{E}$. We have:

$$
\begin{aligned}
& (P \wedge \sim E) \Rightarrow \sim Q \\
& \Leftrightarrow \sim(P \wedge \sim E) \vee \sim Q \\
& \Leftrightarrow(\sim P \wedge \sim \sim E) \vee \sim Q \\
& \Leftrightarrow \sim P \vee E \vee \sim Q \\
& \Leftrightarrow \sim P \vee \sim Q \vee E . \\
& \Leftrightarrow \sim(P \wedge Q) \vee E \\
& \Leftrightarrow(P \wedge Q) \Rightarrow E
\end{aligned}
$$

6. For these problems either prove the claim or give a simple counterexample. If you present a counterexample, present the relations as specific sets of ordered pairs rather than using matrices or graphs. For assume R and S are relations on a set A and $\mathrm{R} \subseteq \mathrm{S}$.
a [10]. If R is transitive then S is transitive.
This is false. Let $A=\{0,1\}, R=\varnothing$, and $S=\{(0,1),(1,0)\}$. R is transitive and $R \subseteq S$.
Since $(0,1) \in S$ and $(1,0) \in S$ but $(0,0) \notin S, S$ is not transitive.
\mathbf{b} [10]. If S is antisymmetric then R is antisymmetric. (Note the reversal of the order from part a.) This is true. We have by the antisymmetry of S,
$(x, y) \in R \wedge x \neq y$
$\Rightarrow(x, y) \in S \wedge x \neq y$
$\Rightarrow(y, x) \notin S$
$\Rightarrow(y, x) \notin R$.
So R is also antisymmetric.
\mathbf{c} [10]. If R is transitive then $R \circ R$ is transitive.
This is true. We have by the transitivity of R, $(x, y) \in R \circ R \wedge(y, z) \in R \circ R$
$\Rightarrow \exists u, v \in A \ni(x, u) \in R \wedge(u, y) \in R \wedge(y, v) \in R \wedge(v, z) \in R$
$\Rightarrow(x, y) \in R \wedge(y, z) \in R$
$\Rightarrow(x, z) \in R \circ R$.
So $R \circ R$ is also transitive.
\mathbf{d} [10]. If R is symmetric then $R \circ R$ is symmetric.
This is true. We have by the symmetry of R,
$(x, y) \in R \circ R$
$\Rightarrow \exists z \in A \ni(x, z) \in R \wedge(z, y) \in R$
$\Rightarrow \exists z \in A \ni(z, x) \in R \wedge(y, z) \in R$
$\Rightarrow(y, x) \in R \circ R$.
So $R \circ R$ is also symmetric.
