CS 313H

Examination 2 Solutions

1. [10] For fixed real numbers a and b, with $a \neq 1$, define $x_{0}=0$,
and for $k=1,2, \ldots$
$x_{k}=a x_{k-1}+b$.
Using induction, prove that for $k \geq 0, x_{k}=\frac{a^{k}-1}{a-1} b$.

Consider the inductive hypothesis, $P(k)=" x_{k}=\frac{a^{k}-1}{a-1} b "$. For $k=0$, we have

$$
\begin{aligned}
x_{0}= & 0=\frac{a^{0}-1}{a-1} b . \text { So } P(0) \text { is true. Now for some } k \geq 1, \text { assume } P(k) . \text { We then have } \\
x_{k+1} & =a x_{k}+b \\
& =a \frac{a^{k}-1}{a-1} b+b \\
& =\frac{a^{k+1}-a+a-1}{a-1} b \\
& =\frac{a^{k+1}-1}{a-1} b,
\end{aligned}
$$

so $P(k+1)$ is also true. By induction we have for $k \geq 0, x_{k}=\frac{a^{k}-1}{a-1} b$.
2. [10] Prove for any sets A, B, and C, that if $A \subseteq B$ then $C \sim B \subseteq C \sim A$.

Assuming $A \subseteq B$, we have

$$
\begin{aligned}
& x \in C \sim B \\
& \Rightarrow x \in C \wedge x \notin B \\
& \Rightarrow x \in C \wedge x \notin A \\
& \Rightarrow x \in C \sim A .
\end{aligned}
$$

Thus, $C \sim B \subseteq C \sim A$.
3. [15] Using induction, prove a generalized distributivity law for sets - that is, for $n \geq 1$ and all sets A and $B_{1}, B_{2}, \ldots, B_{n}$,

$$
A \cap \bigcup_{i=1}^{n} B_{i}=\bigcup_{i=1}^{n}\left(A \cap B_{i}\right)
$$

(Recall for $n \geq 1$ that $\bigcup_{i=1}^{n+1} B_{i}=\left(\bigcup_{i=1}^{n} B_{i}\right) \cup B_{n+1}$.)
Consider the inductive hypothesis, $P(n)=" A \cap \bigcup_{i=1}^{n} B_{i}=\bigcup_{i=1}^{n}\left(A \cap B_{i}\right) " . P(1)$ holds since
$A \cap \bigcup_{i=1}^{1} B_{i}=A \cap B_{1}=\bigcup_{i=1}^{1}\left(A \cap B_{i}\right)$. Now for some $n \geq 1$, assume $P(n)$. We then have

$$
\begin{aligned}
A \cap \bigcup_{i=1}^{n+1} B_{i} & =A \cap\left(\bigcup_{i=1}^{n} B_{i} \cup B_{n+1}\right) \\
& =\left(A \cap \bigcup_{i=1}^{n} B_{i}\right) \cup\left(A \cap B_{n+1}\right) \\
& =\bigcup_{i=1}^{n}\left(A \cap B_{i}\right) \cup\left(A \cap B_{n+1}\right) \\
& =\bigcup_{i=1}^{n+1}\left(A \cap B_{i}\right)
\end{aligned}
$$

so $P(n+1)$ is also true. By induction, the result then holds for all $n \geq 1$.
4. [15]. You are given a relation R on a set A. Using induction, prove that if R is transitive then for $k \geq 1$.

$$
R^{k} \subseteq R .
$$

(Recall $R^{1}=R$ and for $k \geq 1, R^{k+1}=R \circ R^{k}$.)
Consider the inductive hypothesis, $P(k)=" R^{k} \subseteq R " . P(1)$ holds since $R^{1}=R$ is given to be transitive. Now for some $k \geq 1$, assume $P(k)$. We then have for all $x, y \in A$,

$$
\begin{aligned}
(x, y) & \in R^{k+1} \\
& \Rightarrow \exists z(x, z) \in R^{k} \wedge(z, y) \in R \\
& \Rightarrow \exists z(x, z) \in R \wedge(z, y) \in R \\
& \Rightarrow \exists z(x, z) \in R .
\end{aligned}
$$

so $P(n+1)$ is also true. The second line follows by definition. The third line follows by the inductive hypothesis. The last line follows by transitivity. By induction, the result then holds for all $n \geq 1$.
5. [15]. A relation R on a set A is countertransitive if and only if for all $x, y, z \in A$, $((x, y) \in R \wedge(y, z) \in R) \Rightarrow(z, x) \in R$.
a. Prove that if R is symmetric and transitive then R is also countertransitive.

We have for all $x, y, z \in A,(x, y) \in R$ and $(y, z) \in R$ then by symmetry $(y, x) \in R$ and $(\tau, y) \in R$ and hence by transitivity $(z, x) \in R$. Thus, R is countertransitive.
b. Prove that if R is countertransitive and reflexive then R is also symmetric.

We have for all $x, y \in A$, if $(x, y) \in \mathrm{R}$ then $(y, y) \in \mathrm{R}$ by reflexivity and thus $(x, y) \in \mathrm{R}$ ($y, x) \in \mathrm{R}$ by countertransitivity. Thus, R is symmetric.
c. Prove that if R is countertransitive and reflexive then R is also transitive.

We have for all $x, y, z \in A,(x, y) \in \mathrm{R}$ and $(y, z) \in \mathrm{R}$ then from part b , it is symmetric, so $(y, x) \in R$ and $(x, y) \in R$. By countertransitivity $(x, y) \in R$. Thus, R is transitive.

