1. [5] Use a truth table to determine for which truth values of p,q, and $r \ (\sim p \lor q) \land (r \Leftrightarrow p)$ is true.

p	q	r	~ <i>p</i>	$\sim p \vee q$	$r \Leftrightarrow p$	$(\sim p \lor q) \land (r \Leftrightarrow p)$
F	F	F	Т	Т	Т	Т
F	F	Т	Т	Т	F	F
F	Т	F	Т	Т	Т	Т
F	Т	Т	Т	Т	F	F
Т	F	F	F	F	F	F
T	F	Т	F	F	Т	F
Т	Т	F	F	Т	F	F
Т	Т	Т	F	Т	Т	T

2. [15] Using sentential calculus (with a four column format), prove that the conclusion $(s \land \sim p) \Rightarrow t$ follows from premises: $\sim (q \land s)$ and $q \lor p$. (Hint: Employ Conditionalization i.e., "Rule C".)

$\{Pr_1\}$	1. $s \land \sim p$	P (for CP)
$\{Pr_1\}$	2 <i>s</i>	Simp (1)
$\{Pr_2\}$	3. $\sim (q \wedge s)$	P
$\{Pr_2\}$	4. $\sim q \lor \sim s$	DeM (3)
$\{Pr_1, Pr_2\}$	5. ∼ <i>q</i>	DS (2), (4)
$\{Pr_3\}$	6. $q \lor p$	P
$\{Pr_1, Pr_2, Pr_3\}$	7. <i>p</i>	DS (5), (6)
$\{Pr_1\}$	8. ∼ <i>p</i>	Simp (1)
$\{Pr_1, Pr_2, Pr_3\}$	9. <i>t</i>	ContraPrm (7), (8)
$\{Pr_2, Pr_3\}$	10. $(s \land \sim p) \Rightarrow t$	C (1), (9)

3. [15] Prove that the conclusion $p \Rightarrow s$ follows from the premises

 \sim $(p \land q), p \Rightarrow (q \lor r)$, and $r \Rightarrow \sim p$. First convert the premises and the negation of the conclusion into Conjunctive Normal Form, and then employ a resolution proof to get a contradiction.

$$\begin{array}{lll}
\sim (p \land q) \\
\sim p \lor \sim q \\
\\
p \Rightarrow (q \lor r) \\
\sim p \lor (q \lor r) \\
\sim p \lor q \lor r \\
\\
r \Rightarrow \sim p \\
\sim r \lor \sim p \\
\\
\sim (p \Rightarrow s) \\
\sim (\sim p \lor s) \\
\sim p \land \sim s \\
\\
p \land \sim s
\\
1. \sim p \lor \sim q \qquad P \\
2. \sim p \lor q \lor r \qquad P \\
3. \sim r \lor \sim p \qquad P \\
4. p \qquad P \\
5. \sim s \qquad P \\
6. \sim r \qquad Res (3), (4) \\
7. \sim p \lor q \qquad Res (2), (6) \\
8. \sim p \qquad Res (1), (7) \\
9. false \qquad Conj. (4), (8)
\\
\end{array}$$

4. [15] Using the predicates defined on the set \mathbb{N} of natural numbers:

Sxy x is a the successor of y (i.e.
$$x = y+1$$
),
Exy x equal to y

Express in the syntax of Predicate Calculus:

a. No natural number is a successor of itself

$$(\forall x)(\sim Sxx)$$

b. Every natural number has one and only one successor.

$$(\forall y)((\exists x)(Sxy \land (\forall z)(Szy \Rightarrow Exz)))$$

c. b is the successor of the successor of a.

$$(\exists x)(Sxa \land Sbx)$$

5. [20] Prove that $(\exists z)Lz$ follows from $(\forall y)(\exists x)((Lx \Rightarrow Nx) \Rightarrow Gy)$ and $(\exists x)(\sim Gx)$.

$$\{P_{1}\}$$
 (1). $(\forall y)(\exists x)((Lx \Rightarrow Nx) \Rightarrow Gy)$ P

$$\{P_{2}\}$$
 (2). $(\exists x)(\sim Gx)$ P

$$\{P_{2}\}$$
 (3). $\sim Gb$ EI (2)

$$\{P_{1}\}$$
 (4). $(\exists x)((Lx \Rightarrow Nx) \Rightarrow Gb)$ UI (1)

$$\{P_{1}\}$$
 (5). $(La \Rightarrow Na) \Rightarrow Gb$ EI (1)

$$\{P_{1}, P_{2}\}$$
 (6). $\sim (La \Rightarrow Na)$ MT (3), (5)

$$\{P_{1}, P_{2}\}$$
 (7). $\sim (\sim La \vee Na)$ DS (6)

$$\{P_{1}, P_{2}\}$$
 (8). $\sim \sim La \wedge \sim Na$ DM (7)

$$\{P_{1}, P_{2}\}$$
 (9). $\sim \sim La$ Simp (8)

$$\{P_{1}, P_{2}\}$$
 (10). La DN (9)

$$\{P_{1}, P_{2}\}$$
 (11). $(\exists z)Lz$ EG (10)

6a. [10] Using induction, prove that for $n \ge 0$, $\sum_{k=0}^{n} (2k+1) = (n+1)^2$.

For
$$n \ge 0$$
, let $P(n) =$ " $\sum_{k=0}^{n} (2k+1) = (n+1)^2$ ".

Basis step: P(0) is true since $\sum_{k=0}^{0} (2k+1) = (2 \cdot 0 + 1) = 1 = (0+1)^2$.

Inductive step: For $n \ge 0$, $P(n) \Rightarrow P(n+1)$, since if $\sum_{k=0}^{n} (2k+1) = (n+1)^2$, then

$$\sum_{k=0}^{n+1} (2k+1) = \sum_{k=0}^{n} (2k+1) + 2(n+1) + 1$$
$$= (n+1)^{2} + 2(n+1) + 1$$
$$= ((n+1)+1)^{2}.$$

7. [10] Using induction, prove that for any real number a and for all integers $n, m \ge 1$, $a^{mn} = (a^m)^n$. You may assume for any real numbers α and β :

a.
$$\alpha^1 = \alpha$$
,
b. $\alpha^i \alpha^j = \alpha^{i+j}$, for all integers $i, j \ge 1$,
c. $\alpha^i \beta^i = (\alpha \beta)^i$, for all integers $i \ge 1$.

(Hint: Fix $n \ge 1$.)

Fix
$$n \ge 1$$
. For $m \ge 1$, let $P(m) = "a^{mn} = (a^m)^n$ ".

Basis step: P(1) is true since $a^{1-n} = a^n = (a^1)^n$.

Inductive step on m: For $m \ge 1$, $P(m) \Rightarrow P(m+1)$, since if $a^{mn} = (a^m)^n$ then $a^{(m+1)n} = a^{mn+n} = a^{mn}a^n$ $= (a^m)^n a^n$ $= (a^m a)^n$ $= (a^{m+1})^n.$

8. [10] Prove for any sets A, B, C, and D that $(A \cap B) \sim (C \cap D) \subseteq (A \sim C) \cup (B \sim D)$.

We have

$$x \in (A \cap B) \sim (C \cap D)$$

$$\Rightarrow (x \in A \cap B) \land \sim (x \in C \cap D)$$

$$\Rightarrow (x \in A \land x \in B) \land \sim (x \in C \land x \in D)$$

$$\Rightarrow (x \in A \land x \in B \land x \notin C) \lor (x \in A \land x \in B \land x \notin D)$$

$$\Rightarrow (x \in A \land x \notin C) \lor (x \in B \land x \notin D)$$

$$\Rightarrow x \in (A \sim C) \cup (B \sim D).$$

9. [10]. Given sets A, B, and C. Prove that $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

We have

$$(x, y) \in (A \times B) \cup (C \times D)$$

$$\Rightarrow (x \in A \land y \in B) \lor (x \in C \land y \in D)$$

$$\Rightarrow ((x \in A \land y \in B) \lor x \in C) \land ((x \in A \land y \in B) \lor y \in D)$$

$$\Rightarrow ((x \in A \lor x \in C) \land (y \in B \lor x \in C)) \land ((x \in A \lor y \in D) \land (y \in B \lor y \in D))$$

$$\Rightarrow (x \in A \lor x \in C) \land (y \in B \lor y \in D))$$

$$\Rightarrow (x, y) \in (A \cup C) \times (B \cup D).$$

- **10**. Let R be a relation on a non-empty set A. Define $R^1 = R$ and $R^{n+1} = R \circ R^n$ for $n \ge 1$.
- **a. [5].** Prove (from the definition) that if R is transitive $R^2 \subseteq R$.

Take $(x, y) \in \mathbb{R}^2$. By definition of \mathbb{R}^2 , there exists a $z \in A$ so that $(x, z) \in \mathbb{R}$ and $(z, y) \in \mathbb{R}$. But by transitivity, $(x, y) \in \mathbb{R}$ so $\mathbb{R}^2 \subseteq \mathbb{R}$.

b. [10]. Prove that if R is transitive $R^n \subseteq R$ for all $n \ge 1$. (You may assume that if $S_1 \subseteq S_2$ and $T_1 \subseteq T_2$ then $S_1 \circ T_1 \subseteq S_2 \circ T_2$.)

We proceed by induction. For n = 1, $R^1 = R \subseteq R$. Now assume for some $n \ge 1$, that if R is transitive then $R'' \subseteq R$. But then $R''' = R \circ R'' \subseteq R \circ R = R^2 \subseteq R$.

11. a.[10] Given a function $f: A \to B$, let E be a relation on A defined by $(x, y) \in E$ if and only if f(x) = f(y). Prove that E is an equivalence relation.

We must prove that E is reflexive, symmetric, and transitive. Since for all $x \in A$, f(x) = f(x), we have $(x, x) \in E$ so E is reflexive. Next, since if $(x, y) \in E$ then f(x) = f(y) and f(y) = f(x) so $(y, x) \in E$ and E is symmetric. Finally, if $(x, y) \in E$ and $(y, z) \in E$ then f(x) = f(y) and f(y) = f(z) so f(x) = f(z) and $(x, z) \in E$, so E is transitive. Since E is reflexive, symmetric, and transitive it is an equivalence relation.

b. (5) Let $A = \{-10, ..., -1, 0, 1, 2, ..., 10\}$, $B = \mathbb{N}$ and $f(x) = x^2$. Specify the elements of the partition that E imposes on A. (Hint: Recall elements of the partition are sets.)

The partition is: $\{\{-10,10\}, \{-9,9\}, \{-8,8\}, \{-7,7\}, \{-6,6\}, (-5,5\}, \{-4,4\}, \{-3,3\}, \{-2,2\}, \{-1,1\}, \{0\}\}\}$

- **12.** Given a non-empty set A and function $f: A \rightarrow A$,
- **a.** [10] Prove that if $f \circ f$ is one-to-one then f is one-to-one.

Given $x, y \in A$, suppose f(x) = f(y). Then $f \circ f(x) = f(f(x)) = f(f(y)) = f \circ f(y)$. But since $f \circ f$ is one-to-one then x = y. We conclude f is one-to-one.

b. [10] Prove that if $f \circ f$ is onto then f is onto.

Since $f \circ f$ is onto, for any $z \in A$ there exists $x \in A$ so that $f \circ f(x) = z$. but since $f \circ f(x) = f(f(x))$, letting y = f(x), we have an element $y \in A$ so that f(y) = z. We conclude f is onto.

13. [15] For any $n \ge 1$, consider the set $B = \{1, 2, ..., 2n\}$. Prove that if $A \subseteq B$ and $|A| \ge n+1$ then there exist $a, b \in A$ so that a+b=2n+1. (Hint consider a function $f(x) = \begin{cases} x & x \le n \\ 2n+1-x & x \ge n+1 \end{cases}$.)

The function f maps A into $\{1,...,n\}$. By the pigeonhole principle there exist distinct $a,b \in A$ so that f(a) = f(b). Since a and b are distinct we cannot have both $a,b \le n$ since then a = f(a) = f(b) = b. Similarly we cannot have both $a,b \ge n+1$ since then 2n+1-a=f(a)=f(b)=2n+1-b and again a=b. Thus, without loss of generality, assume $a \le n$ and $b \ge n+1$. Then since a = f(a) = f(b) = 2n+1-b, we have a+b=2n+1.