Final Examination Solutions

CS 313H

1. [10] Use a truth table to determine for which truth values of p,q, and r $(p \lor r) \Rightarrow (q \land r)$ is true.

p	q	r	$p \lor r$	$q \wedge r$	$(p \lor r) \Rightarrow (q \land r)$
F	F	F	F	F	Т
F	F	T	T	F	F
F	T	F	F	F	Т
F	T	T	Τ	T	Т
T	F	F	Τ	F	F
T	F	T	Т	F	F
T	T	F	T	F	F
T	T	T	T	T	Т

The expression $(p \lor r) \Rightarrow (q \land r)$ is true when q is false (except when p is also true) and when all of p,q, and r are true.

2. [20] Using sentential calculus (with a four column format), prove that the conclusion $s \wedge \sim s$ follows from premises: $p \Rightarrow q, \sim (q \vee r)$, and $r \Leftrightarrow \sim p$.

$\{Pr_1\}$	$(1.) \ p \Rightarrow q$	P
$\{Pr_2\}$	$(2.) \sim (q \vee r)$	P
$\{Pr_3\}$	(3.) $r \Leftrightarrow \sim p$	P
$\{Pr_2\}$	$(4.) \sim q \land \sim r$	DeM (2)
$\{Pr_2\}$	$(5.) \sim q$	Simp (5)
$\{Pr_2\}$	(6.)∼ <i>r</i>	Simp (5)
$\{Pr_3\}$	$(7.) (r \Rightarrow \sim p) \land (\sim r \Rightarrow \sim \sim p)$	Taut (3)
$\{Pr_3\}$	$(8.) \sim r \Rightarrow \sim p$	Simp (7)
$\{Pr_2, Pr_3\}$	(9.)~~ <i>p</i>	MP (8)
$\{Pr_2, Pr_3\}$	(10.) <i>p</i>	DN (9)
$\{Pr_1, Pr_2, Pr_3\}$	(11.)q	MP (1), (10)
$\{Pr_1, Pr_2, Pr_3\}$	$(12.) s \land \sim s$	Clav (6), (13)

3. [20] Prove that the conclusion $q \wedge r$ follows from the premises

 $p \Rightarrow q, q \lor r, p \Rightarrow r, q \Rightarrow p$, and $r \Rightarrow p$. First convert the premises and the negation of the conclusion into Conjunctive Normal Form, and then employ a resolution proof to get a contradiction.

$$p \Longrightarrow q$$

$$\sim p \lor q$$

$$q \vee r$$

$$p \Rightarrow r$$
 $\sim p \vee r$

$$\begin{array}{l} q \Longrightarrow p \\ \sim q \lor p \end{array}$$

$$\begin{array}{l}
r \Rightarrow p \\
\sim r \lor p
\end{array}$$

$$\sim (q \land r)$$

$$\sim q \lor \sim r$$

1.
$$\sim p \vee q$$
 P

2.
$$q \lor r$$
 P

3.
$$\sim p \vee r$$
 P

4.
$$\sim q \vee p$$
 P

5.
$$\sim r \vee p$$
 P

6.
$$\sim q \lor \sim r$$
 P

7.
$$r \lor p$$
 Res (2), (4)

10.
$$\sim r$$
 Res (6), (9)

11.
$$\sim p$$
 Res (3), (10)

4. [10] Using the predicates defined on the set \mathbb{Z} of integers :

$$Px$$
 x is prime,

$$Ox$$
 x is odd,

Exy
$$x$$
 equal to y

$$Lxy$$
 x is less than y.

Express in the syntax of Predicate Calculus (you may use any integers as constants):

a. All prime numbers are positive and the only even prime number is 2.

$$(\forall x \in \mathbb{Z})(Px \Rightarrow L0x) \land (\forall x \in \mathbb{Z})((Px \land \sim Ox) \Leftrightarrow Ex2)$$

b. There is no prime number strictly between 317 and 337.

$$(\forall x \in \mathbb{Z})((L317x \wedge Lx337) \Rightarrow \sim Px)$$

5. [25] Prove that $(\forall x)Px \wedge (\forall x)Qx$ follows from $(\forall x)(Px \wedge Qx)$ (Rather than using the TC rule be specific about the sentential calculus rule.)

P

$$\{P_1\}$$
 (1). $(\forall x)(Px \land Qx)$

$$\{P_1\}$$
 (2). $Pa \wedge Qa$ UI (1)

$$\{P_1\}$$
 (3). Pa Simp (2)

$$\{P_1\}$$
 (4). $(\forall x)Px$ EG (3)

$$\{P_1\}$$
 (5). Qa Simp (2)

$$\{P_1\}$$
 (6). $(\forall x)Qx$ EG (3)

$$\{P_1\}$$
 (7). $(\forall x)Px \land (\forall x)Qx$ Conj (6)

6. [10] Using induction, prove that for $r \neq 0, 1$ and $n \geq 0$, $\sum_{k=0}^{n} r^k = \frac{r^{n+1} - 1}{r - 1}$.

For
$$n \ge 0$$
, let $P(n) = \sum_{k=0}^{n} r^k = \frac{r^{n+1} - 1}{r - 1}$.

Basis step:
$$P(0)$$
 is true since $\sum_{k=0}^{0} r^k = 1 = \frac{r^{0+1} - 1}{r - 1}$.

Inductive step: For $n \ge 1$, $P(n) \Rightarrow P(n+1)$, since if $\sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}$, then

$$\sum_{k=0}^{n+1} r^k = \sum_{i=0}^{n} r^k + r^{n+1}$$

$$= \frac{r^{n+1} - 1}{r - 1} + \frac{r^{n+2} - r^{n+1}}{r - 1}$$

$$= \frac{r^{(n+1)+1} - 1}{r - 1}.$$

7. [10] Consider the Fibonacci sequence: $f_0 = 1$, $f_1 = 1$, $f_k = f_{k-1} + f_{k-2}$, for $k \ge 2$. Using induction, prove that for $n \ge 0$, $\sum_{k=0}^{n} f_k^2 = f_n f_{n+1}$.

For
$$n \ge 0$$
, let $P(n) = \sum_{k=0}^{n} f_k^2 = f_n f_{n+1}$.

Basis step: P(0) is true since $\sum_{k=0}^{n} f_k^2 = f_0^2 = 1 = 1 \cdot 1 = f_0 f_1$.

Inductive step: For $n \ge 0$, $P(n) \Rightarrow P(n+1)$, since if $\sum_{k=0}^{n} f_k^2 = f_n f_{n+1}$, then

$$\sum_{k=0}^{n+1} f_k^2 = \sum_{k=0}^n f_k^2 + f_{n+1}^2$$

$$= f_n f_{n+1} + f_{n+1}^2$$

$$= f_{n+1} (f_n + f_{n+1})$$

$$= f_{n+1} f_{(n+1)+1}.$$

8. [10] Prove for any sets A, B, C, and D that $(A \cup B) \sim (C \cup D) \subseteq (A \sim C) \cup (B \sim D)$.

We have

$$x \in (A \cup B) \sim (C \cup D)$$

$$\Rightarrow (x \in A \cup B) \land \sim (x \in C \cup D)$$

$$\Rightarrow (x \in A \lor x \in B) \land \sim (x \in C \lor x \in D)$$

$$\Rightarrow (x \in A \lor x \in B) \land (x \notin C \land x \notin D)$$

$$\Rightarrow (x \in A \land x \notin C \land x \notin D) \lor (x \in B \land x \notin C \land x \notin D)$$

$$\Rightarrow (x \in A \land x \notin C) \lor (x \in B \land x \notin D)$$

$$\Rightarrow (x \in A \land x \notin C) \lor (x \in B \land x \notin D)$$

$$\Rightarrow (x \in A \sim C) \lor (x \in B \sim D)$$

$$\Rightarrow x \in (A \sim C) \cup (B \sim D).$$

9. [10]. Given sets A, B, and C be sets. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

$$(x, y) \in A \times (B \cup C)$$

$$\Leftrightarrow x \in A \land y \in B \cup C$$

$$\Leftrightarrow x \in A \land (y \in B \lor y \in C)$$

$$\Leftrightarrow (x \in A \land y \in B) \lor (x \in A \land y \in C)$$

$$\Leftrightarrow (x, y) \in (A \times B) \lor (x, y) \in (A \times C)$$

$$\Leftrightarrow (x, y) \in (A \times B) \cup (A \times C).$$

10. [15]. Let R be defined $R = \{(x, y) : y \text{ is an integer multiple of } x\}$. Prove that R is a partial order on \mathbb{Z}^+ .

We need to show that R is reflexive, antisymmetric, and transitive. For any $x \in \mathbb{Z}^+$ x is an integer multiple of x so $(x,x) \in R$ and R is reflexive. Next suppose $(x,y),(y,x) \in R$ so y is an integer multiple of x and x is an integer multiple of y. We have then for some integers k and j, j = kx and k = jy. But then k = kjy so kj = 1 and since k and k = kjy are integers, both are one. We conclude that k = ky and k = k

11. [10] Let A be any set and R be a relation on A. Prove that if R is both symmetric and antisymmetric then must also be transitive.

We must prove that $(x, y) \in R$ and $(y, z) \in R$ imply $(x, z) \in R$. To that end suppose $(x, y) \in R$ and $(y, z) \in R$. By symmetry both $(y, x) \in R$ and $(z, y) \in R$. By antisymmetry x = y and y = z, thus x = y = z. So, $(x, y) \in R$ means $(x, x) \in R$ and this is the same as $(x, z) \in R$.

12. [10] Given $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ and $g: \mathbb{Z}^+ \to \mathbb{Z}^+$ defined by f(n) = n! and g(n) = n-1, respectively, what are

a.
$$f \circ f$$

 $f \circ f(n) = f(f(n)) = (n!)!$.
b. $f \circ g$
 $f \circ g(n) = f(g(n)) = (n-1)!$.
c. $g \circ f$
 $g \circ f(n) = g(f(n)) = n! - 1$.
d. $g \circ g$
 $g \circ g(n) = g(g(n)) = (n-1) - 1 = n - 2$.

- 13. Given a sets A, B, and C and functions $f: A \rightarrow B$ and $g: B \rightarrow C$,
- **a.** [10] Prove that if $g \circ f$ is one-to-one then f is one-to-one.

Given $x, y \in A$, suppose f(x) = f(y). Then $g \circ f(x) = g(f(x)) = g(f(y)) = g \circ f(y)$. But since $g \circ f$ is one-to-one then x = y. We conclude f is one-to-one.

b. [10] Prove that if $g \circ f$ is onto then g is onto.

Since $g \circ f$ is onto, for any $z \in C$ there exists $x \in A$ so that $g \circ f(x) = z$. but since $g \circ f(x) = g(f(x))$, letting y = f(x), we have an element $y \in B$ so that g(y) = z. We conclude g is onto.