Practice Final Examination Solutions

CS 313H

1. [10] Use a truth table to determine for which truth values of p, q, and $r \sim(p \wedge r) \vee(\sim q \wedge r)$ is true.

p	q	r	$p \wedge r$	$\sim(p \wedge r)$	$\sim q$	$\sim q \wedge r$	$\sim(p \wedge r) \vee(\sim q \wedge r)$
F	F	F	F	T	T	F	T
F	F	T	F	T	T	T	T
F	T	F	F	T	F	F	T
F	T	T	F	T	F	F	T
T	F	F	F	T	T	F	T
T	F	T	T	F	T	T	T
T	T	F	F	T	F	F	T
T	T	T	T	F	F	F	F

The expression $\sim(p \wedge r) \vee(\sim q \wedge r)$ is true for all truth values of p, q, and r except all of p, q, and r being true.
2. [20] Using sentential calculus (with a four column format), prove that the conclusion p follows from premises: $p \vee q, q \Rightarrow t, \sim r \vee \sim s,(s \wedge t) \Rightarrow r$, and $q \Rightarrow s$.
$\left\{P r_{1}\right\}$
(1.) $p \vee q$
P
$\left\{P r_{2}\right\}$
(2.) $q \Rightarrow t$
P
$\left\{P_{3}\right\}$
(3.) $\sim r \vee \sim s$
P
$\left\{P r_{4}\right\}$
(4.) $(s \wedge t) \Rightarrow r$

$$
\mathrm{P}
$$

$\left\{P r_{5}\right\}$
(5.) $q \Rightarrow s$
P
$\left\{P r_{6}\right\}$
(6.) $\sim p \quad \mathrm{P}$ (for CP)
$\left\{P r_{1}, P r_{6}\right\}$
(7.) q
DS, (1), (6)
$\left\{P r_{1}, P r_{2}, P r_{6}\right\}$
(8.) t
MP (2), (7)
$\left\{P r_{1}, P r_{5}, P r_{6}\right\}$
(9.) s
MP (5), (7)
$\left\{P r_{1}, P r_{2}, P r_{5}, P r_{6}\right\}$
(10.) $s \wedge t$
Conj. (8), (9)
$\left\{P r_{1}, P r_{2}, P r_{4}, P r_{5}, P r_{6}\right\}$
(11.) r
MP (4), (10)
$\left\{P r_{1}, P r_{2}, P r_{3}, P r_{4}, P r_{5}, P r_{6}\right\}$
(12.) $\sim s$
$\left\{P r_{1}, P r_{2}, P r_{3}, P r_{4}, P r_{5}, P r_{6}\right\}$
(13.) p
DS, (3), (11)
$\left\{P r_{1}, P r_{2}, P r_{3}, P r_{4}, P r_{5}\right\}$
(14.) $\sim p \Rightarrow p$
ContraPrm. (9), (12)
$\left\{P r_{1}, P r_{2}, P r_{3}, P r_{4}, P r_{5}\right\}$
(15.) p
C (6), (13)
Clav (6), (13)
3. [20] Prove that the conclusion p follows from the premises $((p \Rightarrow q) \wedge(p \wedge \sim q)) \vee r$ and $r \Rightarrow p$. First convert the premises and the negation of the conclusion into Conjunctive Normal Form, and then employ a resolution proof to get a contradiction.

$$
\begin{aligned}
& ((p \Rightarrow q) \wedge(p \wedge \sim q)) \vee r \\
& ((\sim p \vee q) \wedge(p \wedge \sim q)) \vee r \\
& ((\sim p \vee q) \vee r) \wedge((p \wedge \sim q) \vee r) \\
& (\sim p \vee q \vee r) \wedge(p \vee r) \wedge(\sim q \vee r) \\
& \\
& r \Rightarrow p \\
& \sim r \vee p \\
& \\
& \sim p \\
& \\
& \text { 1. } \sim p \vee q \vee r \\
& \begin{array}{ll}
\text { 2. } p \vee r & P \\
\text { 3. } \sim q \vee r & P \\
\text { 4. } \sim r \vee p & P \\
\text { 5. } \sim p & P \\
\text { 6. } \sim r & \text { Res (4), (5) } \\
\text { 7. } p & \text { Res (2), (6) } \\
\text { 8. false } & \text { Conj. (5), (7) }
\end{array}
\end{aligned}
$$

4. [10] Using the predicates defined on the set L of upper case Latin characters, the set \square^{+}of positive integers, and the set S of strings of upper case Latin characters :
$V x \quad x$ is a vowel, for $x \in L$,
Sxn $\quad x$ can be written in n strokes, for $x \in L$ and $n \in \square^{+}$,
Wxs $\quad x$ occurs in the string s, for $x \in L$ and $s \in S$,
Bxy $\quad x$ occurs before y in the English alphabet, for $x, y \in L$.
Exy $\quad x$ equals y, for $x, y \in L$.
Express in the syntax of Predicate Calculus (you may use upper case Latin characters, positive integers, and strings of upper case Latin characters as constants):
a. 'A' is the only upper case Latin character that is a vowel and can be written in three strokes but does not occur in the string 'STUPID'.
$(\forall x \in L)\left(\left(V x \wedge S x 3 \wedge \sim W x^{\prime} S T U P I D^{\prime}\right) \Leftrightarrow(E x A)\right)$
b. There is an upper case Latin character strictly between ' K ' and ' R ' that can be written in one stroke.
$(\exists x \in L)(B K x \wedge B x R \wedge S x 1)$
5. [25] Prove that $(\forall u)(\exists v) R v u$ follows from $(\exists x)(\forall y) R x y$ (Rather than using the TC rule be specific about the sentential calculus rule.)
$\left\{P_{1}\right\} \quad(1) .(\exists x)(\forall y) R x y$ P
$\left\{P_{1}\right\}$
(2). $(\forall y) R a y$
EI (1)
$\left\{P_{1}\right\}$
(3). Rab
$\left\{P_{1}\right\} \quad$ (4). $(\exists v) R v b$
$\left\{P_{1}\right\} \quad(5) .(\forall u)(\exists v) R v u$
EG (3)
UG (4)
6. [10] Using induction, prove that for $n \geq 1, \sum_{k=1}^{n} k \cdot k!=(n+1)!-1$.

For $n \geq 1$, let $P(n)=" \sum_{k=1}^{n} k \cdot k!=(n+1)!-1 . "$.
Basis step: $P(1)$ is true since $\sum_{k=1}^{1} k \cdot k!=1 \cdot 1!=1=2-1=(1+1)!-1 .$.
Inductive step: For $n \geq 1, P(n) \Rightarrow P(n+1)$, since if $\sum_{k=1}^{n} k \cdot k!=(n+1)!-1$. , then

$$
\begin{aligned}
\sum_{k=1}^{n+1} k \cdot k! & =\sum_{i=0}^{n} k \cdot k!+(n+1)(n+1)! \\
& =(n+1)!-1+(n+1)(n+1)! \\
& =(n+1+1)(n+1)!-1 .
\end{aligned}
$$

7. [10] a. Given a sequence of integers a_{1}, a_{2}, \ldots such that $a_{k}>a_{k-1}$ for $k \geq 2$, using induction to prove that for $k \geq 1, a_{k} \geq a_{1}+k-1$. (Notice $a_{k}>a_{k-1}$ is equivalent to $a_{k} \geq a_{k-1}+1$.)

For $k \geq 1$, let $P(k)=$ " $a_{k} \geq a_{1}+k-1$ ".
Basis step: $P(1)$ is true since $a_{1} \geq a_{1}+(1-1)$.
Inductive step: For $k \geq 1, P(k) \Rightarrow P(k+1)$, since if $a_{k} \geq a_{1}+k-1$, then

$$
\begin{aligned}
a_{k+1} & =\left(a_{k+1}-a_{k}\right)+a_{k} \\
& \geq a_{1}+k-1+\left(a_{k+1}-a_{k}\right) \\
& \geq a_{1}+k-1+1 \\
& \geq a_{1}+(k+1)-1 .
\end{aligned}
$$

b. [5] Using this, prove that for any integer m, display a k so that $a_{k} \geq m$.

Given any integer m, let $k=\max \left\{1, m+1-a_{1}\right\}$ then $k \geq 1$ and $k \geq m+1-a_{1}$ so $a_{k} \geq a_{1}+k-1 \geq a_{1}+m+1-a_{1}-1=m$.
8. [10] Prove for any sets A, B, and C that $A \sim(B \sim C)=(A \sim B) \cup(A \cap C)$.

We have

$$
\begin{aligned}
& x \in A \sim(B \sim C) \\
& \Leftrightarrow x \in A \wedge \sim(x \in B \sim C) \\
& \Leftrightarrow x \in A \wedge \sim(x \in B \wedge x \notin C) \\
& \Leftrightarrow x \in A \wedge(x \notin B \vee x \in C) \\
& \Leftrightarrow(x \in A \wedge x \notin B) \vee(x \in A \wedge x \in C) \\
& \Leftrightarrow(x \in A \sim B) \vee(x \in A \cap C) \\
& \Leftrightarrow x \in(A \sim B) \cup(A \cap C)
\end{aligned}
$$

9. [10]. Given sets A, B, C, and D be sets. Prove that $A \times B \subseteq C \times D$ if and only if $A \subseteq C \wedge B \subseteq D$.

Suppose $A \subseteq C \wedge B \subseteq D$, then
$(x, y) \in A \times B$
$\Rightarrow x \in A \wedge y \in B$
$\Rightarrow x \in C \wedge y \in D$
$\Rightarrow(x, y) \in C \times D$.

Suppose $A \times B \subseteq C \times D$, then
$x \in A \wedge y \in B$
$\Rightarrow(x, y) \in A \times B$
$\Rightarrow(x, y) \in C \times D$
$\Rightarrow x \in C \wedge y \in D$,
Thus $A \subseteq C \wedge B \subseteq D$,
10. [15]. Let R be defined $R=\left\{((x, y),(u, v)): x^{2}+y^{2}=u^{2}+v^{2}\right\}$. Prove that R is an equivalence relation on \square^{2}.

We need to show that R is reflexive, symmetric, and transitive. For any $(x, y) \in \square^{2}$ $x^{2}+y^{2}=x^{2}+y^{2}$ so $((x, y),(x, y)) \in R$ and R is reflexive. Next since for $(x, y),(u, v) \in \square^{2}$ if $x^{2}+y^{2}=u^{2}+v^{2}$ then $u^{2}+v^{2}=x^{2}+y^{2}$ so $((x, y),(u, v)) \in R$ implies $((u, v),(x, y)) \in R$ is symmetric. Lastly, if $((x, y),(u, v)) \in R$ and $((u, v),(w, z)) \in R$ then $x^{2}+y^{2}=u^{2}+v^{2}$ and $u^{2}+v^{2}=w^{2}+z^{2}$ so $x^{2}+y^{2}=w^{2}+z^{2},((x, y),(w, z)) \in R$, and R is transitive. We conclude R is an equivalence relation on \square^{2}.
11.. Consider a relation R on a set A. Prove or disprove with a simple counter example each of the following:
a. [10] If R is reflexive, then R^{2} is reflexive.

For all $x \in A$, since R is reflexive then $(x, x) \in R$. But then $(x, x) \in R$ and $(x, x) \in R$ imply $(x, x) \in R^{2}$ so R^{2} is reflexive.
b. [10] If R is symmetric, then R^{2} is symmetric.

For all $x, y \in A$, if $(x, y) \in R^{2}$ then for some $z \in A,(x, z) \in R$ and $(z, y) \in R$. But then since R is symmetric for the same $z,(z, x) \in R$ and $(y, z) \in R$ so then $(y, x) \in R^{2}$ so R^{2} is symmetric.
c. [10] If R is antisymmetric, then R^{2} is antisymmetric.

Let $A=\{1,2,3\}$ and $R=\{(1,2),(2,3),(3,1),(3,3)\}$ so
$R^{2}=\{(1,3),(2,3),(2,1),(3,2),(3,1)\} . R$ is antisymmetric, but R^{2} is not antisymmetric since both $(2,3),(3,2) \in R^{2}$.
d. [10] If R is transitive, then R^{2} is transitive.

For all $x, y \in A$, if $(x, y),(y, z) \in R^{2}$ then for some $z \in A,(x, z) \in R$ and $(z, y) \in R$ and for some $w \in A,(y, w) \in R$ and $(w, z) \in R$. Since R is transitive $(x, y) \in R$ and $(y, z) \in R$ so then $(x, y) \in R^{2}$ so R^{2} is transitive.
12. [10] Given $f: \square^{+} \rightarrow \square^{+}$and $g: \square^{+} \rightarrow \square^{+}$defined by $f(n)=n^{2}$ and $g(n)=2^{n}$, respectively, what are
a. $f \circ f$

$$
f \circ f(n)=f(f(n))=\left(n^{2}\right)^{2}=n^{4} .
$$

b. $f \circ g$
$f \circ g(n)=f(g(n))=\left(2^{n}\right)^{2}=2^{2 n}$.
c. $g \circ f$

$$
g \circ f(n)=g(f(n))=2^{\left(n^{2}\right)} .
$$

d. $g \circ g$

$$
g \circ g(n)=g(g(n))=2^{\left(2^{n}\right)} .
$$

13. [20] Given a sets A and B and function $f: A \rightarrow B$, Prove that f is one-to-one if and only if $f(X \cap Y)=f(X) \cap f(Y)$ for all $X, Y \subseteq A$. (Hint: Recall $f(\varnothing)=\varnothing$ and $f(\{x\})=\{f(x)\}$ for any $x \in A$.)

We will first show that if $f(X \cap Y)=f(X) \cap f(Y)$ then f is one-to-one. To that end, suppose $f(X \cap Y)=f(X) \cap f(Y)$ and $f(x)=f(y)$. Then $f(\{x\})=f(\{y\})$ and $\varnothing \neq f(\{x\})=f(\{x\}) \cap f(\{y\})=f(\{x\} \cap\{y\})$ so $\{x\} \cap\{y\}$ is nonempty, but this means $x=y$ so f is one-to-one.

Next we will show that if f is one-to-one then $f(X) \cap f(Y) \subseteq f(X \cap Y)$. Take any $z \in f(X) \cap f(Y)$ thus $z \in f(X)$ and $z \in f(Y)$, so for some $x \in X, f(x)=z$ and for some $y \in Y, f(y)=z$. But f is one-to-one, so $x=y$. Since $x=y$ and $y \in Y$ we have $x \in Y$ and $x \in X \cap Y$. Since $f(x)=z, z \in X \cap Y$ and we have proved that $f(X) \cap f(Y) \subseteq f(X \cap Y)$.

Lastly, we show that $f(X \cap Y) \subseteq f(X) \cap f(Y)$. (This is actually true whether f is one-toone or not.). Take any $z \in f(X \cap Y)$ thus for some $x \in X \cap Y, f(x)=z$ and for some $y \in Y, f(y)=z$. Since $x \in X \cap Y, z \in f(X)$ and $z \in f(Y)$, so $z \in f(X) \cap f(Y)$ and $f(X \cap Y) \subseteq f(X) \cap f(Y)$.

